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2. 1.  INTRODUCTION AND SUMMARY

. _

ﬂ{ . The original objectives of this program were to explore optical methods
v for performing eigensystem calculations based on matrix-vector or

YO matrix-matrix multiplications. Specifically, the program called for the
f: analysis and design of a high accuracy Acousto-Optic (AQ) vector-matrix
’f multiplier together with pre- and post-processing electronics and

3 input/output interfaces to implement an eigensystem solution algorithm
A suitable for optical implementation. The main goal of the program was
ﬁ to explore high accuracy (> 16 bits) optical-based special purpose

systems whose performance would exceed, by orders of magnitude, the

: current or even projected performance of electronic systems such as

- CM0S, VHSIC, GaAs, etc. Such systems would find applications in the

" Adaptive Phased Array Radar (APAR) area, which by nature, has extremely
i high computational requirements, of the order of 1010-1012 M-A/s

(multiplications/additions per second).

o

=~ In the first phase of the program, available eigensystem-solution

R algorithms were studied, in order to determine their suitability for AO
f) implementation (Section 2). The results of this study showed that all
f; algorithms, aside from the matrix multiplication part, require a

A plethora of operations to be carried out electronically rather than

. optically. This is because optics cannot easily or practically perform
A either logical operations or certain arithmetic operations such as
ﬂi square roots and divisions. Such requirements make the possibly

) efficient use of the A0 processor highly questionable. In addition,

;; nearly all eigensystem or direct APAR algorithms require computational
;' accuracies that exceed 16 binary bits. To accommodate such accuracies
ﬁ requires that the A0 processor be incorporated in a system involving

S non-analog processing techniques. Unfortunately, there are not many

g. algorithms suitable for implementing high accuracy multiplications/

~

:' 3
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. additions with AD processors (Section 3). The only viable choice is the
- DMAC algorithm (Digital Multiplication via Analog Convolution) and its

{: variations. Based on this algorithm, two novel A0 architectures were
E developed, a single-detector, space-integrating A0 system and a .
time-integrating, systolic A0 system (Section 4). Utilizing

‘:E state-of-the-art technology it was estimated that both systems could in )
E: principle deliver throughput rates of the order of 109 M-A/s. The
o performance of these systems was compared with that of state-of-the-art

. purely-electronic counterparts using as figures of merit the system

) efficiency, defined as throughput rate per unit power, and the
3? multiplication speed (Section 8). A simple analysis showed that both
oL systems (as well as other DMAC systems that have appeared in the open

L literature) do not offer any advantage over electronic systems that
;E; could be assembled with existing digital multipliers. The reasons for

‘3 the relatively poor performance of the optical systems are: (1) the J
o serial nature of DMAC and (2) the fact that optics does only part of the
- multiplication while the non-optical part relies on power-consuming A/D
iﬁ: converters.

.

al

{2 In view of this situation, we developed a Bit Parallel Multiplication

ad technique (BPAM) for performing DMAC, which eliminates the serial
,3 problem (Section 3). Subsequently, we developed a novel space- and
]E time-integrating BPAM A0 system which is capable of performing
b multiplications in a single clock cycle (Section 4). However, an
;$‘ analysis showed that the multiplication speed and efficiency are only of

'ﬁ: the order of those already achieved with GaAs multipliers. The reasons

-ﬁi for this are: (1) the nature of BPAM which incorporates an increased 1
'i number of A/Ds and (2) the dimensions of the focused laser beam on the

-, A0 cell. Thus, we concluded that neither DMAC nor BPAM AQ processors *
:i: offer any significant advantage over existing electronic processors.

t: However, in conjunction with DMAC, we developed a circularly polarizing
f\: sampling technique that allows for complex matrix operations with much

Q reduced time and hardware constraints (Section 5). We believe that this




r— e R g hadhav i adidh PE WY TR MWW ITy Tfwirw iveset 7 1

technique can be applied to any systolic or array processor including

fully electroric systems.

These initial results were discussed with program monitors in meetings
held in early 1985. As a result of these meetings, it was mutually
decided to abandon all DMAC or BPAM AQ related work and follow two new
directions for the program that were related to the APAR problem. These
two directions were: (1) optically interconnected electronic
multipliers and (2) position-coded residue optoelectronic look-up table

(LUT) processing.

The first topic involves optical interconnection techniques to enable
high-speed multi-pin, electronic multipliers to be arranged in patterns
that traditional micro-strip interconnects cannot handle (Section 7).
For this purpose simple but efficient fiber-optic splitter/combiner
techniques were studied and prototypes were developed in conjunction
with a 4x4 bit fiber-optically addressed digital multiplier

(Section 7.2). These results, although initial and largely incomplete

due to shortage of both funds and time, show that existing low-cost
fiber-optic technology can be used for globally interconnecting
electronic array processors. We suggest that these ideas merit further
development via the design and implementation of a fully electronic

addressed square array processor.

The second direction involves the use of residue-based, high-speed LUTs
that can be used for the APAR problem. Such LUTs allow for high-speed
(single clock cycle) flexible operations such as multiplications,
additions, subtractions and some forms of division. We approached this
idea from both the LUT and APAR-LUT processor level. At the LUT level
we suggested a novel implementation of a LUT which is based on the use
of interlaced electrode laser diodes or light-emitting diodes

(Section 8). This approach offers the advantage that existing

technology can be used for the implementation of GHz-type operation

el il
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. LUTs. We demonstrated the capabilities of the laser diode LUT by

itﬁ fabricating and testing a prototype. We show that data rates in excess
TE:E of 250 MHs (RZ data) can be achieved even for discrete component LUTs.
*ﬁ' We believe that hybrid or monolithic approaches should offer switching
n speeds to allow data rates in excess of 1 GHs. Operation in the residue
;ﬁE; number system requires binary-to-residue and residue-to-binary

l;z conversions. With this in mind, we showed that LUT technology can be
ZT? used in an efficient way for both conversions. Through an example of a
s typical residue LUT system, a square array processor, we showed that the
e conversions occupy about 20X of the hardware. This demonstrates the
o need to remain in the residue domain for as long as possible so that the
t?ﬁﬂ conversion-required hardware is a relatively small fraction of the

>~v. total. The LUTs require a large number of laser diodes even for
":a moderate size applications and it is necessary to consider ways for

ﬁ:ﬁ hardware minimization both at the LUT and system levels. We examined
o LUT implementation techniques in which the number of laser diodes is

" reduced by about 50%. However, the corresponding number of
fZ?i interconnections required per laser diode is increased by a factor of
Ehe s two and we concluded that this is not a favorable approach. At the
':L: system level we studied a residue scaling technique which allows for
~)-. scaling by factors of about 0.005% of the total dynamic range while

:h}: maintaining accuracies of 9-10 bits. This seems to be a viable
;53; technique and further analysis is suggested in conjunction with specific
.;‘i applications.
528

S0 For the APAR LUT problem we examined a variety of non-iterative

:SE: algorithms for possible LUT implementation (Section 9). We found that
b the only choice that allows for residue LUT implementation is a variant
> of the Gram-Schmidt orthogonaliszation approach. In particular, this
::’3 approach does not require square roots and it allows for the

55

postponement of division until the last processing step. We showed,

S

a

through examples, that this technique yields results identical to those
obtained with straightforward arithmetic. We point out, however, that
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Setede this technique requires a rather large dynamic range which translates to
qﬁ excessive hardware. Based on this technique we designed a LUT-based
pipelined processor which can invert a 6x6 APAR data matrix in about

M . 7 clock cycles. This processor is a typical example of the flexibility
s afforded by the residue LUT approach. However, we emphasize that these
| are initial results and that much work is needed for further

4 understanding of the LUTs, the algorithms, and the concept as a whole.
We suggest that analyses are carried out to clearly demonstrate the

W coppetitiveness of the residue LUT approach compared with digital

S pipelined techniques.
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2. EIGENSYSTEM SOLUTION

2.1 Introduction

In this section we consider the application of existing algorithms for

determining the eigenvectors tn and eigenvalues Xn of a matrix C where

N
C = L A g 4 (2.1)

n=1

One application for the eigenanalysis of a matrix is in a method for
solving the Adaptive Phased Array Radar (APAR) problem illustrated in
Figure 2.1. In this problem, which this program specifically
addresses, we wish to calculate the adaptive weight vector w which

satisfies the system of equations
Cx =3 : (2.2)

where C is the data covariance matrix formed from M successive

"snapshots" of the data vector x(m), i.e.,

M
c=¥! I x'(a) x( (2.3)

m=1

and 3 is the steering vector formed from the data vector x(m) and the

. reference signal X i.e.,

"
=w! L (@) x () (2.4)

n=1
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The solution to Equation (2.2) is written formally as

w= clg (2.5)

so that if the complete eigenvalues and eigenvectors of C are known,
then from Equation (2.1)

N
w= L X;l !: s !n (2.6)

n=1

The flow chart in Figure (2.1) shows the successive steps to be taken in
determining the weight vector w which is subsequently used to derive the

antenna output signal y(m) given by

y(@) = ¥ (@) x(a) (2.7)

To form the covariance matrix from the data vectors we require M outer
products of size NxN (where N is the number of elements in the antenna)
and M matrix additions. Once the covariance matrix is formed, a
complete eigenanalysis of the matrix is made to determine the
eigenvectors !n and eigenvalues Xn. The details of this eigenanalysis
depend on the particular algorithm used; the different algorithms that
can be used and which are particularly suited to optical implementation
form the subject matter of the remainder of this section. Once the

eigenvectors and eigenvalues are determined, the operations required for
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forming the weight vector are N vector inner products and N vector
additions. One further vector inner product is required to determine
the output signal y(m).

We note that all operations, leaving aside the eigenanalysis, are of the
type which can readily be implemented optically. Thus, the focus for
this method of solution of the APAR problem is on the algorithms
available for eigenanalysis and, in particular, on those algorithms that
are most suited to optical implementation.

2.2 Gershgorin Method

This -ethodl’2 involves bounding the region of space in which the
eigenvalues are located. The flow diagram used for this method is given
in Figure 2.2. Thus, we first determine the radii, Gi, of the discs
which contain the eigenvalues, i.e.,

6. = L IC..1, 1{igN (2.8)

The eigenvalues of C lie in the union of the discs Di of radii, Gi’
centered at cij‘ If n of these discs are connected and disjoint from
the remaining, these discs then contain exactly m eigenvalues of C.
This requires a logic operation.

These bounds can be improved through repeated similarity

transformations. Thus, the first Gershgorin disc D1 is reduced by
using D C D! instead of C, where

D = Diag (p,...1) (2.9)
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Figure 2.2 Flow Chart for the Determination of Eigenvalue Regions
using the Gershgorin Method
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p = €
min . (2.10)

122 10y -0y

and € is the magnitude of the largest off diagonal element. To
determine € requires a sorting operation in N(N-1) elements and p
requires a similar sorting operation in N(N-1) elements together with a
division. Finally, the similarity transformation requires two

matrix-matrix multiplications to derive D C D_l.

The advantages of this method are that it is simple and it uses matrix-
matrix multiplications, operations which can be implemented optically.
However, the method finds only eigenvalue regions and logic is required
for isolating the eigenvalues, an operation which optics cannot
presently address. Further, there is no definite order in which the
eigenvalues can be found. We also note that the method cannot be used
to find eigenvectors. One procedure for finding eigenvectors from
eigenvalues is that of inverse iteration, discussed in Section 2.4.
Thus, the Gershgorin method may be useful as a first step for other

methods such as inverse iteration.

2.3 Power Method

This method!’?

We begin with some guess 2(0), for the dominant eigenvector and form

is an iterative method and is illustrated in Figure 2.3.

y D) g (2.11)

in a matrix-vector multiplication operation. Next, the largest element of
(1+1)
v

followed by N scalar multiplications, to derive

is determined, which involves a sorting operation in N elements

N N R N R
\-‘\."-)'\ '\_.\ e
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g The disadvantages of this method are that it is an iterative method

-.;{::v requiring logic and division operations both of which cannot be readily

::_-; implemented using optics. The convergence rate for obtaining solutions
i is
1' a3
TN
o (1+1) Ay
o\ AT = {1 + o“——] ] ] (2.14)
. 1 1 X
.':'

N Various schemes for accelerating convergence have been proposed such as
i
ﬁ} using a shift of origin, i.e., using (C-pI) instead of C, using c?
M) instead of C, and using the Rayleigh quotient (zi C zk)/(zE zk).
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The power method breaks down for complex eigenvalues with the same

modulus.

2.4 Inverse Iteration

This methodl’2 is a variation of the power method and is best known for
finding the eigenvector corresponding to an eigenvalue close to some p.
A flow chart for this method is given in Figure 2.4. Thus, knowing an
approximate eigenvalue p, we first form, through N scalar additioas,

the matrix E given by:
E=C-pI (2.15)
We then seek solutions to the equation
© - p1) v+ = (D (2.16)

This is similar to the power method except that C is replaced by
(C—pI)-l, both having the same eigenvectors.

The next step involves the triangular decomposition of E to give
E=LU (2.17)

The detailed operations involved in this decomposition are shown in the
flow diagram of Figure 2.5, and involve scalar multiplications and

additions together with logic decisions.
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Having decomposed the matrix E we solve the sets of equations

Lg=3zD ' (2.18)

vy oy (2.19)

"ol o

by back substitution to derive the eigenvectors and eigenvalues.

Operations involved here are sorting in N elements and N scalar

K multiplications.

j; Disadvantages of the technique are that a considerable number of

i transformations are required and the convergence properties are far from
[+ satisfactory. In addition, matrices exist which have no triangular
;3 decomposition in spite of the fact that their eigenproblem is

:: well-conditioned, or whose triangular decomposition is numerically
) unstable.

&

3 2.5 Q-R Method

.

)

- This methodl’2 has proven to be the most effective of known methods of
solving the general eigenvalue problem. In contrast to the method
discussed in Section 2.4, it is based on unitary transformations. A

flow diagram of the approach is given in Figure 2.8. The first step

I = s
R R G e 88

involves the Q-R decomposition of the matrix to give a factorization

f; into the product of a unitary matrix Q and an upper triangular matrix R
2
B\,
1 1), (1
:3 ¢ = D) (2.20)
. The steps involved in this procedure are illustrated in Figure 2.7.

L. Operations involve (N-1) squares, (N-1) additions, 1 division and 1
multiplication for each pass through the loop together with 1 outer
product and matrix-matrix multiplication.
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From Equation (2.20) we form

c(l"'l) = R(l) Q(l) (2.21)
T
_[qw qan Q(l)] c [qa) NONe) @.22)
As 1 + =,
oD 4 Diag (Af, Ay, ..t MY (2.23)

i.e., for large A\ we have determined the eigenvalue matrix A
¢ -y
Thus,
A=QCQ (2.24)
or rearranging
cQ=Q1A (2.25)

where  contains the eigenvectors.

The operations involve extensive matrix-matrix multiplication together

with logic decisions.

. * N
A

-'l

7 N X 3K PR
W\ 2 S .!‘0,!’0’:"?‘7\" 5‘!’ ; ) - B -‘ » v




;E"b
*v.
:
3
>y
g
. 2.6 Discussion
3 .‘J S —
o ‘-:
.
N Although many algorithms exist for eigenanalysis of matrices, they all
[}~
R involve extensive arithmetic and logical operations. The basic
arithmetic operations of addition, subtraction, and multiplication can
> be implemented using optics. However, operations such as division,
) square roots, and logic decisions cannot presently be implemented
¥
Y optically. Thus, the algorithms discussed in this chapter require, at
best, a hybrid optical-electronic approach for use in a practical
vu:: system.
N
DX For such a hybrid system, even if those operations which can be
» implemented optically prove to be executable at higher speed than can be
b obtained electronically, the overall speed is still dictated by
2 non-optical operations. If continued switching between the optical and
' electronic domains is necessary as is the case for executing these
algorithms, the value of the optical processing contributions to the
11 overall system becomes questionable.
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3. ALGORITHMS FOR HIGH-ACCURACY ACOUSTO-OPTIC PROCESSORS

Optical systems performing multiplication and addition can be
implemented via analog, binary, and residue techniques. Analog
processors, although fast, suffer from low accuracy and can only be used
for applications where 8-10 bits accuracy is required. Due to the
nature of our applications (eigensystem solution, APAR, etc.) we require
accuracies well in excess of 10 bits (e.g., 18 or 20 bits) and, thus, we
will not consider analog processors. This Section covers binary
techniques which result in A0 systems of high digital accuracy. Residue
arithmetic methods will be discussed in Section 8.

3.1 Digital Multiplication via Analog Convolution (DMAC)

Multiplication of two binary numbers via nnslog-convolution3 (DMAC) is
based on the novel idea of convolving the binary words representing the
two numbers. The result is generated in a mixed binary format where,
like binary arithmetic, each digit is weighted by a power of 2; but
unlike binary arithmetic, each digit can be > 1. The algorithm can be
best realised via some simple examples: consider the calculation of the
products 15°41 and 29¢62. We first convolve the binary representations

of the numbers for each product. The results of the convolutions are

(15¢41): [001111]s[101 00 1]

00112212111] (3.1

(29°62): [011101]+{111110]=[01233432110] (3.2

Next, we weight each comnvolution point by a power of 2. Finally we sum
the weighted points to obtain the final result:

15041 = [1028 « 1027 4 2028 4 . . . 4 129

815 (3.3)

20082 = [102° + 2028 4 3027 + . | 4 0020] = 1708 (3.4)

8-1
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o] Note that in order to sum different products (which is the case for inner

= products), we sum the corresponding points and subsequently weight and

;E sum. For example:

x (15¢41) + (20°62) = [(1+0)¢27 + (2+1)e2% 4 (3+1)e2” &+ . . . «

N (1+0)2°%] = 2413 (3.5)

3

ke The importance of this scheme is evident in considerations of dynamic

e range requirements. Fi; example, to multiply two numbers each with a

{: dynamic range of N = 27" = 65,5638, we need an output dynamic range of

'E N=2 2. 4.3 x 109. With binary encoding, the input and output dynamic

”? range must be 2 (i.e., "0" and *1") and 16 (i.e., when all 16 bits are

:f *1'), respectively. Consider now the summation of 50 such products. If
analog techniques were used, we would need an output dynamic range of
2.1 x 1011. With the binary scheme, we need input and output dynamic
ranges of 2 and 50 x 18 = 800.

:: Notice that once the convolution data have been generated (in analog

? form), an A/D converter in conjunction with a shift-register/
accumulator can be used to convert the mixed binary data to binary data.

lé The A/D converter requirement is for log2k bits, where k is the maximum

‘gﬁ value of the mixed binary data.

2

Xa The DMAC technique can be extended, via a twos complement encoding, to

o handle both positive and negative numbers. To allow sign notation, the

:fv leftmost bit for each binary word is the sign bit: O for plus and 1 for

;}b minus. Positive binary numbers are represented by their original binary

yn form with the addition of the sign bit. For example, the integer +13 is

[~ represented by 01 1 0 1.

:j To represent a negative number we first change the sign bit of its

o signed binary absolute value from O to 1. Next, we change all the ones

:ﬁ: to zeros and all seros to ones (this is the ones complement

L
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'{_; representation). Finally, we add a 1. For example, for the integer
E"% -45, the ones complement representation is 1 01 0 0 1 0, which in two
gfj complement form becomes 1 0 1 001 1. Conversion from the twos
SO complement representation to signed absolute value is obtained by
?'; changing all seros (ones) to ones (zeros) and adding a 1.
: : As is shown in Reference 4, one technique of multiplying two numbers,
e using twos complement binary representation, requires that the input
o numbers be represented by the same number of bits required to represent
‘:E: the output. For example, consider the product +13 x -45 = -585. To
f:i : represent the output, we require a total of 11 bits, including the sign
g:“ bit. To extend the input numbers to 11 bits, we insert six zeros
%1’ between the sign bit and the most significant bit (MSB) of +13 and four
;3Q ones between the sign bit and the MSB of -45. Thus the input numbers
fﬁ; become 00000001101 and11111010011 for +13 and -45
e respectively. The product of the binary numbers can now be calculated
-4 by performing a usual-sense multiplication with the exception that any
’;? bits generated to the left of the sign bit column are truncated. An
':i example of this procedure is shown in Figure 3.1 for the case of the
w product +13 x -45. The result is expressed in a mixed binary form and
“'L it can be converted to twos complement representation by: divide the
ﬁs least significant mixed binary bit by modulus 2, add the quotient to the
N next bit, divide by 2, add the quotient to the next bit, divide by 2,
;fﬁ add the quotient to the next bit...... etc.
%
:Sﬁ The remainders of these series of operations constitute a binary word
:52 which is the twos complement representation of the mixed binary output.
Ll Note that the remainder of the first division is the LSB and the
- ) remainder of the last division is the sign bit of the so-obtained twos
:~;S complement binary word. An example of this procedure is shown in
ﬁ:: Figure 3.2 for the case of the product +13 x -456 = -585.
s
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; (+13) 010 00O0O0O0OT110 1 TwosComplement
: (-5 X 1/1 11101 001 1 Representation
: 000'0000110.1
; 0oloo0o0001101
y 0loo00o000 00
3 0{0000000
3 0001101
2 0{000 00
: ol1 101
, 1{1 01
1{0 1
- 01
.
303222022111 MixedBinary
Representation
|
L
'3 Figure 3.1 g:;:z::n::tggtlltiplication in Twos Complement '
e
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{' (1 ) mod2=0 R=1 Y (LSB)

i (1+ {) mod2=0  R=l

(1+ {) mod2=0  R=l

fii (24 {) mod2=1  R=0

23 (2+ {) modz=1  R=l

'_: (0+ ¢) mod 2=§) R=1 ? Twos Complement
o (2+ {) mod2=1 R =0 Representation
- (2+ {) mod2=1 R=1

= (2+ {) md2=1  R=l

(3+ 1) md2=2  R=0 | .o

(3+ y) mod2=2 R=1 | (Sign Bit)

Pigure 3.2 Example of Conversion from Mixed Binary Representation
to Twos Complement Representation
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: As Figure 3.2 suggests, the result is 1 011011011 1 which is the

:E twos complement representation of the number -585. Note that if the

N mixed binary result is generated in the form of an analog signal, then

- the device necessary for the conversion is an A/D converter followed by 1

" s shift register/accumulator.

gg As mentioned earlier, the mixed binary form of the output allows

b addition of different products without the need for carries. To

| illustrate this, consider the summation of the products (+13 x -45) and

.ﬁ (+13 x -10). The mixed binary representatiqon of the product

'2 +13 x -10=-130 i 3 3332231110. Addition of this result to

;j the one that corresponds to the product +13 x -45 yields

} 9

b’ 33222022111

' . 33332231110

E:

s, 686554253221

:?' Conversion of the mixed binary result to twos complement gives 1 01 0

tﬂ 0110101 which is the twos complement representation of the

) number (-585) + (-130) = -715.

)

55 From the above brief discussion it is apparent that incorporation of

N the DMAC-twos complement arithmetic by optical processors, solves two
major problems; specifically, accuracy and bipolar number handling.

>, However, note that the use of such algorithms results in a major

g sacrifice in the processor’s time-bandwidth product (TBW), ‘

b specifically, a reduction by at least a factor of 2N-1, where N is the
number of bits in the input. This is due to the nature of the ]
serial-type convolution which requires 2N-1 clock cycles for its
completion. Note that aside from the TBW reduction, we undergo a
multiplication speed reduction (as compared to the clock).
Specifically, the digital multiplication time required is Tb x (2N-1)

3-6
- q
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where Tb is the clock pulse-width. These issues are discussed in more

detail in Section 8.

3.2 Bit Parallel Multiplication (BPAM)

To avoid the DMAC problems, we have developed a bit-parallel digital
multiplication (BPAN) algorithm.s This can be explained via a simple
convolution example. Suppose we wish to convolve the sequences
A3A2A1Ao and BOBIBZBS where Ai,Bi i=0,1,2,3 are digits of binary
value. Since N=4, we should obtain 2N-1 = 7 convolution points. A

rigorous implementation of the convolution, shows that the 7

convolution points are

o]
[=]
]

AoBo

= AIBO + AOBI

= AgBy + ABy + AgBy

= A8, + AB, + AB, + A B, (3.6)
= AgBy + AjBy + AjBy

= AgBy + A8,

= A8,

v v " v T o
R Oy b N =

From Eq. (3.7) we can observe the following:

(1) The output convolution points (PO through PB) are linear
. . . 1 _
combinations of various AiBj products (e.g., P° = AlBo + AOBI).

(2) 1If all AiBj products are available in parallel, ome can form the

. output convolution points by summing properly.

(3) If the products and the various product summations can occur in

parallel, then the time required for digital multiplication is no

longer 2N-1 clock cycles but rather 1 clock cycle.




"‘S&c_

‘5 From the above we see that, in principle, a BPAM can be formed in a

:: single clock cycle as long as all the AiBj input bit combinations are

i* available in parallel. Note that the summation of M different number

o products (i.e., inner product) can be achieved in a way similar to the :
y one for DMAC; i.e., sum in parallel all the AinBjm’ i,j =1,2,....N,

& m=1,2,...2N-1 convolution points.

The BPAN approach solves at least two major problems (as compared with
. DMAC) ; namely, (1) TBW reduction and (2) net multiplication speed.

However, it creates a problem which is absent in DMAC; namely, it

] requires NxN output points for a single multiplication, which translates
U

h to a high output resolution requirement. Nevertheless, it is the only
b binary technique that guarantees both high speed and accuracy.
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4. OPTICAL ARCHITECTURES FOR DMAC AND BPAN

In this Section we discuss a number of poésible optical architectures
which we have developed, in conjunction with the algorithms of

Section 3. The first family of processors (space-integrating
Acousto-0Optic processor and time-integrating Acousto-Optic processor)
represent systems that are based on the serial-type convolution. The
performance of these processors is typical of that expected from systems
which utilize serial DMAC. These processes can be fabricated using
present custom technology. The second family of processors (BPAM
Acousto-Optic processor) represent systems that are based on
bit-parallel digital multiplication (BPAM). Unlike the first class of
systems (which require 2N-1 clock cycles for the formation of the
convolution) the multiplication is formed in a single clock cycle
thereby greatly enhancing the net multiplication speed. These
architectures are good examples of BPAM optical processors that can be
fabricated with present technology. Furthermore, these architectures
should serve as a guide to the performance that may be expected from a

BPAM processor.

4.1 DMAC Acousto-Optic Space-Integrating Processor

A simple binary number multiplication can be achieved using
Acousto-0Optic (A0) techniques and the serial convolution scheme of
Section 3.1. Suppose we want to multiply two numbers; A and B, each
represented by N bits. The bits of both numbers are made available
serially (as a function of time) and named SA(t) and SB(t),

respectively.

The optical system shown in Figure 4.1 is composed of two AD cells
arranged in a counter-propagation configuration (i.e., the sound waves
travel in opposite directions). The first-order diffracted beam from

A0l is imaged on AO2 through a pair of lenses and a spatial filter

i
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Pigure 4.1 Acousto-Optic Processor for Binary Number Multiplication
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(not shown). The product of the resulting distributions is imaged onto
cylindrical lens L1 through a second pair of lenses and a spatial
filter. A detector follows a slit, which is placed at the back focal
plane of Ll’ so that only the DC part of the resulting Fourier Transform
is detected. Thus, the system part Ll-slit-detector is used in order
to form the integration of the product of the data present in AOl and
A02. The data SA(t) and SB(t) are applied simultaneously onto the AO
cells. At every instant of time, lens L1 forms the summation over the
bit-by-bit products SA.SB' The resulting light is detected by the
detector. Because the data SA(t) and SB(t) are moving in opposite
directions, the light incident on the detector is proportional to the
convolution SA(t)*SB(t). Consequently, the output of the detector is
proportional to the convolution values. Since the data SA and SB are
composed of N bits, the convolution is composed of 2N-1 parts each
triangular in shape, under the assumption that the bits are represented
by square pulses. Note that the maximum value of the convolution occurs
when all SA and SB data are present in the A0 cells. This corresponds
to the highest triangle of Figure 4.1. Thus, we see that the simple
arrangement of Figure 4.1 performs the first step of the binary
algorithm; namely, the convolution. To obtain the product A*B, we have
to weight each convolution point by a power of 2 and then sum the
results. This can be achieved if an A/D converter follows the detector
and feeds its output to a digital shift-register/accumulator. When all
2N-1 convolution parts have been accumulated, the values of the shift
register are read out. This binary word corresponds to the product A*B
with an accuracy of 2N bits (each number is represented by N bits in the

input).

We can now expand the binary number multiplier system of Figure 4.1 to a

multi-channel system for vector-matrix multiplication. Suppose we want

to multiply the vector bll’b21"""bl1 with the matrix A consisting of
elements aij where i = 1,2... .M and j =1,2,... .M. The result will be N
inner products Cil’ where i 1,2,....M.
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) The optical system shown in Figure 4.2 is similar to the optical system
‘EE; of Figure 4.1, except that: (1) AOl and AO02 are M-channel cells and (2)
s lens L1 is spherical rather than cylindrical. If a cylindrical lens is
Ry substituted in place of L1 then the system is an exact multi-channel
gl version of the system of Figure 4.1. Thus, M detectors placed in
Eﬁ parallel at the focal plane and at locations x =0, y = Yy ¥ = Yo
ﬁ; ...y = YU (where y,,75,75....yy are the locations of the M AO cell
Y
"N channels across y), record M parallel convolutions:
'2:
hrﬁ all‘bll’ 312*b21’°"'all‘bll (4.1)
o
L If these convolutions are added and weighted, the result corresponds

to a single inner product, 011. This is exactly the function of the
»~; power of the spherical lens L1 along y. Thus, the lens L1

> accomplishes two tasks: (1) it performs the necessary convolution
; - integral along x and (2) it sums the various convolution points along

y similar to the operation shown in the parentheses of Eq. (3.5).

:Sgi This operation is allowed because of the mixed-binary format of the
::&: output (resulting from the binary multiplication scheme) which allows
RS for product summation without the need for carries. Thus, the output
‘{} of the detector corresponds to a convolution which, after the required
’2;3 post-processing, is equal to the inner product:

2

t ;: C11 = [anb11 + 512b21 .. alubul] (4.2)
) : : .
';2: Toa:b:aln the seco?d inner product 021, the VeCtOT bll’b21 ..... bll is
o oaded onto AO2 while the vector 8511890s -+ -1 Boy i loaded onto AO1.
558 , This procedure is repeated M times until, all Cij'c =1, 2,...,M inner
}?, products (that correspond to the vector-matrix product A*B) are

$§$ obtained. Similarly, and in order to obtain a full matrix-matrix

jiﬁ multiplication, this procedure is repeated M x M times.

A
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We see that the system of Figure 4.2 is a real-time high-accuracy
vector-vector multiplier which can be used for either vector-matrix or
matrix-matrix multiplication. From the systems’ point of view, the
above multiplier offers another very significant advantage, namely, a
single output, since a single detector is used for inner product
detection. Consequently, the required interface with a digital

microprocessor is very simple.

It is worthwhile to mention that if M detectors are used (in conjunction
with a cylindrical lenms, Ll) the system can still calculate inner
products. In this case the necessary product summation must be carried
out digitally. This obviously increases the complexity of the
electronic post-processing as well as of the interface, but it offers
some additional flexibility. Specifically, it allows for separate
operations over the various input/output channels, just like a
conventional digital array processor. Whether one wants to use a
processor with a single detector or M detectors is a question that
depends on the specific algorithms used and can be answered only when a
specific analysis of existing algorithms is made in conjunction with the
architectural choices.

4.2 DMAC Acousto-Optic Space-Integrating Processor Characteristics

The binary algorithm allows the processor to have input and output
dynamic ranges of N and 2N bits, respectively. The component dynamic
range requirements are 2:1 for the A0 cells and NxM:1 for the detector
in a single-detector system or N:1 in a multi-detector system. This is
because, for full inner product formation, the maximum possible value of
the output convolution is N x M, which occurs when all M input numbers
have all their input bits at logic "1'. Consider now a specific example
of M = 128 and N = 8 (18 bits output). Then NxM = 1024, which means
that for a single detector system, the dynamic range of the detector

needs to be at least 1024:1. In practice, however, the dynamic range
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[N of the detector should be higher in order to avoid detection errors

53? ‘which might be severe if one takes into account the post-processing
e stage where each convolution point is weighted by a factor of 2). A
3’d ' simple statistical analysis shows that,e in order to keep the bit error
a‘; probability to ¢ 2.9 x 10_7, the dynamic range of the detector needs to
i:f: ' be increased by a factor of 10, which corresponds to 10,000:1. This
::%; requires a detector with 40 dB dynamic range, which is commercially

U available. 0On the other hand, if a 128-detector system is to be used,
85 the maximum value of the convolution is N, which corresponds to a

,;; detector dynamic range of 10 x 8:1 or 19 dB. It is evident that the

ii; detector requirements are not severe and can be met with commercially
gi: available devices.

j;

‘{:g To avoid computational errors, both A0 cells should be very uniform over
&Eﬁ their entire apertures. This requirement is significant, especially for
" the single detector system, and comes about because of the 2-D spatial
o integration used. If non-uniform devices are used, convolution points
s of the same analog values will correspond to different light levels, and
éEa spatial integration will consequently yield an incorrect output.

WY

‘)_ Initial analysis shows that the uniformity required should be better
ii& than N x M:1 and tends to approach the dynamic range of the
i&; detector(i.e., 10 x N x M:1). The uniformity requirement of the AOD

7,; cell is achievable because the required A0 cell time-aperture is

,$: relatively small (i.e., for N = 9 and bit-width of 10 nsec, the required
iig aperture is 0.08 psec). The small apertures associated with low

5;5 acoustic attenuation AQ crystals result in a very uniform acoustic

- field, which corresponds to the propagating bit-stream. 0On the other
prx ' hand, because of the small aperture, acoustic diffraction is
ffij controllable. Note that the effects of acoustic diffraction, in

i;ii conjunction with the algorithm used, can be severe (this is explained in
' detail in Reference 7).
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The A/D converter requirement is 1032(N x M) bits for a single detector
system or lbgz(N) bits for an M-detector system. For example: for
N =8 and N = 128, logz(NxH) = 10 and logz(N) = 3. These A/D

requirements are easily met with commercially available devices.

The throughput rate of the system depends on several factors: (1)
number of input channels, (2) number of output channels, (3) number of
input bits, (4) input bit width and (5) number and speed of available
A/D converters. Let us calculate the throughput rate of the system
based on rather optimistic data. We assume the availability of a Bragg
cell with 128 input channels and use 128 output channels (i.e., the most
flexible version of Figure 4.2 where lens L1 is cylindrical).

For N = 8 and a bit width TB = 100 nsec, the total time required for

formation of a single inner product is
T = (2N-1) TB = 1.5 psec (4.3)

where the extra (N—I)TB time represents the total duration of zeros
which follow the N bits. This is required in order to separate the
different inner products. During this time, the system (with M = 128)
has performed 128 multiplications. Thus, the throughput rate of the
system is

R = 128 M-A/1.5 x 10°° sec = 8.5 x 107 M-A/sec (4.4)

To improve the throughput rate of the system, we need to decrease T,
which implies that we need to decrease the input bit width. For example,
for TB = 3 nsec, the throughput rate of the system is R =

2.84 x 10° U-A/sec or 2.8 GOPS.

For this scenario with TB 2 3 nsec, the output A/D requirements are:
(1) 128 3-bit A/D’'s with a speed of 300 MHz (for the multichannel output
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version) and (2) a single 10-bit A/D with a speed of 300 MHz (for the
single output version). Clearly the single-channel output version is
impractical since 10-bit A/D’s at 300 MHz are not presently available.
On the other bhand, the multi-channel output version, although difficult,

is more realistic.

4.3 DMAC Acousto-Optic Time-Integrating Processor

The basic unit of this processor is the classical time-integrating AO
processor whose schematic diagram is shown in Figure 4.3. We first
describe the operation of the unit for the formation of a single product
(e.g., +13 x -45) via the twos complement scheme.4 The AQ cell is
driven by the binary data a = +13 in a bit-serial mode (Figure 4.4).

The sign bit is applied first. At time t = tl all bits that correspond
to the number +13 have been loaded into the cell. The so-created
spatial distribution is Schlieren imaged onto a time-integrating linear
detector array. The array consists of N elements, where N is the number
of output bits (e.g., for our example N = 11). At time t = t, the
binary data that correspond to the number b = -45 are applied onto the
laser diode in a bit-serial mode. These data are applied such that the
LSB is first. The resulting pattern is time-integrated by the detector
array. At time t = t2 the data in the A0 cell have moved by distance dB
which corresponds to a time-delay TB equal to the duration of a bit plus
a zero (i.e., TB = tz—tl, see Figure 4.4). At the same time the second
bit (i.e., LSB + 1) of number b is applied onto the laser diode. A new
pattern is created which is added, by the detector array, onto the
already existing pattern. At time t = ts, 3 new pattern leaves the AD
cell, is added by the detector, etc. Thus, after time t = tll_tl + TB
the last (i.e., 11th) pattern has been created and added. At this
point, the values of the N elements of the detector are read. A close
inspection of Figure 4.4 shows that the readout charge has a value
(function of element) that corresponds to 33222022111, which

is the mixed binary form of the number +13 x -45 = -585. These analog
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::ﬁ Figure 4.3 Time-Integrating Acousto-Optic Processor
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values are consequently converted into twos complement representation

via the A/D/shift-register/accumulator unit.

We emphasize two important points: (1) each bit in either a or b data

is followed by a zero. This is necessary in order to separate (onto the

"detector array) different output bits, and is due to the fact that while

the data b are applied, data a are moving. (2) the LSB of the word a is
followed by 2N zeros of total duration T = NTB' This is necessary in
order to distinguish between different products; that is, if the LSB of
a is followed by the sign bit of a number ¢, the output would be

incorrect due to contributions from the product bc.

The unit we have described serves as a simple two-number multiplier.
Extension to vector-vector multiplication (via inner product formation)
can be achieved via the multi-unit architecture of Figure 4.5. In this
case an array of M laser diodes in conjunction with an M-channel A0 cell
is used. Each of the a; (i=1,2, ..., M) elements of vector a drives
a different A0 cell channel. Similarly, each of the bi i=1,2 ...

M) elements of vector b drives a different diode.

For the time being let us ignore the cylindrical lens. Instead, let us
assume that the A0 cell is imaged onto an MxN element, 2-D detector
array. This system is basically a multi-channel version of the system
of Figure 4.3, and it provides M products a; x bi' i=1,2, ..., M.
Summation of these products results in an inner product albl + ...+
albl‘ This summation is accomplished via the integration property
(spatial integration) of the cylindrical lens and is valid because of
the mixed binary form of the output, which allows for product summation
without the need for carries. The resulting pattern is consequently
time-integrated by the N-element, 1-D detector array placed at the back
focal plane and at location fy = 0.
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By utilizing the delay properties of a larger aperture M-channel AD

cell, in conjunction with an MxK array of laser diodes, we can extend
the system of Figu;e 4.5 to the systolic processor of Figure 4.68. This
system at peak operation can provide, in parallel, K inner products
bilail + ...
integration of the lens and the time-integration of the detector array.
Note that in this case the 1-D detector array needs to have KxN

elements. Also note that if the laser diodes illuminate adjacent cell

+ bilaiu’ i=1, 2, ..., K which are formed via the space-

areas (i.e., along x), only K/2 inner products are formed during each
data cycle. This is because of the requirement that the LSB of the bi
data be followed by 2N zeros of total duration T = NTB. We elaborate on

these, as well as other, system issues in the following Section.

4.4 DMAC Acousto-Optic Time-Integrating Processor Characteristics

Because of the algorithm used, the systexr described in Section 4.3 is
capable of forming high-accuracy, inner products between bipolar-value
vectors. The output accuracy is N bits, which corresponds to a dynamic
range of 20 log (ZN). To fully utilize this accuracy, however, ome has
to minimize possible detection errors, which can be large if we consider
the post-processing stage where we effectively weight each mixed binary
bit by a power of 2. The key point is to minimize the maximum value
accumulated in the detector array, which is NxM. For minimum detection
errors6 (bit error probability of < 2.9 x 10_7), the detector array
should have a dynamic range of at least 10xMxN:1. This requirement
effectively constrains both N and M. Readily available state-of-the-art
detectors have a dynamic range of better than 35 dB which, in principle,
allows systems with N = M = 18. The throughput rate of such a system
highly depends on the data loading rate. Currently available AD cells
and laser diodes allow for bit widths down to 2 nsec. This means that
for N = 18, we need at least 2x16x2 nsec = 84 ns for product formation,
after loading the data in the AD cell. Consequently a system with N = K
= M = 18 has a throughput rate of 2 x 109 M-A/sec. The A/D requirements

........
............

............
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Figure 4.8 Time-Integrating Acousto-Optic Binary Systolic Processor
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depend on the number of bits we are reading out which in turn depends on
the location of the detector element we are reading out. For example,
o the maximum possible value for the sign-bit element is MxN, for the MSB
K is Mx(N-1), for the MSB-1 is Mx(N-2), etc. To read these values, the

" A/D’s need to have logz(MxN), logz(lx(N-l)), ..., etc., bits,

A respectively. A simple analysis shows that, in order to read out 8

o) inner products, we need 64 A/D’s at 8 bits, 32 A/D’s at 7 bits, 16 A/D’s
" at 8 bits, ..., etc. These A/D’s need to operate at a minimum input
frequency of ~ 16 MHz.

Other system issues we need to consider are: (1) laser diode
collimation and (2) output detectors. The former depends on both N and
the sound speed in the A0 crystal. For an efficient system a GaP AQ
cell should be used because of its good diffraction efficiency

(> 30%/RF watt) and wide bandwidth (> 500 MHz 3-dB bandwidth). In this
material the sound speed is A 6.3 x 106 mm/sec which implies that,
P for N = 16 and bit + zero width of TB = 4 nsec, the total time-duration
5; of a binary word is Tw = 16 x 4 nsec = 64 nsec. This corresponds to a
distance of ~ 0.4 mm over which a single laser diode needs to be
collimated. An additional constraint is the maximum allowable light

e cross-talk between adjacent diodes. To avoid detection errors the

Pt I

’l‘:’

-
oA

: cross-talk should be down by the same order as the dynamic range of the
N detector; e.g., for N=K = 16, M = 16, it should be at least -34 dB.
N These requirements can be efficiently met via the use of a fiber-optic

fan-out™ in conjunction with an array of miniature graded-index

i collimation lenses. Note that at any instant, every other laser diode
.ﬁ is off. In principle, one can take advantage of this by turning off the
o corresponding detector arrays. This would guarantee absence of cross-
,i: talk-related detection errors. To achieve this, one needs detectors
h* that can operate at the binary word switching frequency. For N = 18 and
3* TB = 4 nsec the switching frequency is fs = 1/(16 x 4 nsec) ~ 16 MHz,
:: which implies that the detectors should have an integration time of 64
- nsec or a clock frequency of 16 MHz. Parallel-readout detector arrays
e

. 4-16
A

0 N Vel Al .

> . y - s - . - A -« - n o - 3 -

.. .. .. -, ~ AL .- - - v " t- - »
b e e T T e AFATRTN,




P

i
P 7,

EHE R

S
-

e

s e

- - A &

4 - g &'*-’ 2
e v SR

s .l‘. l".l“"‘. | .‘ Y

F

Nt

’

(RRYEMIAENE!

‘l

g

. 1‘

'<
PRI
LR U e T
PR

. B r T PR

-

LA o d ol Dod g WP ey W PO UW LU wWw Wy wem T e e ey e

with the above characteristics can, in principle, be made with current
technology. An alternative solution involves a fiber-optic fan-out in
conjunction with separate detector elements. This solution guarantees
not only the proper integration time but also minimal detector cross-

talk which, in turn, minimizes unwanted detection errors.

4.5 BPAM Acousto-0Optic Processor

In this section we describe one possible architecture which we have
developed for implementing BPAM. Consider the AD processor of

Figure 4.7. Light from 4 different laser diodes at wavelengths
XO,XI,Xz,Xs is multiplexed in a fiber using conventional fiber-optic
techniques. The light level from each diode has a value proportional to
Ai’ i=0,1,2,3. Thus light at XO has a value proportional to AO’ at Xl
proportional to Al, etc. Thus, if a 4 bit binary representation is
used, e.g., 1011, then light will be "on" from lasers at Xo, Xz and Xs,
and "off" from the laser at Xl. The fiber output is then collimated
(via lens Ll) and expanded (via lenses L2,L3) along the y-dimension.
Along the x-dimension the light is focused. The so-created "pencil®
beam illuminates a 4-channel Acousto-Optic cell. Each of the 4 channels
of the AD cell bas a value proportional to Bi‘ Thus the bottom channel
gets the Bo value, the next channel the Bl’ etc. If BO’BI’BZ’B3 is
binary, e.g., 0110, then we will have the two middle channels "on" and
the bottom and top channels "off". The A0 device is followed by a prism
and a cylindrical lens. The prism/lens set accomplishes the following:
(1) wavelength demultiplexing and (2) focusing of the 16 spots. Thus,
the back focal plane of L4 we obtain 16 spots in a 4x4 format. Assuming
that X°>X1>X2>X3 then the values in the set of spots are:

4-17

CYWA VLIS YN LS AL IS NN
W {" -.-’ o T W X Wy o o o o e 2O 2l

.- ‘A.’ EO ﬁ'.




Py Mol Sod & o a4 4o acas aiaa-ah e s ald ach aom a4 g e oy T P T R e I-.T

As03) A0\ .
4-channel
AO CELL PRISM

<

1

|

A0\ Aoo\o)

Figure 4.7 BPAM Implementation with A0 Cell and A-Multiplexing
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Close inspection of the values of these spots reveals that we have
formed in parallel all AiBj’ i,j =0,1,2,3, products necessary for the
formation of the 7 bits (see Eq. (3.7)). Next we need to add these
products properly in order to obtain the 7 convolution points PO-PG'

The additions can be accomplished in a variety of ways:

(a) The use of detectors with specific area shapes (e.g., see
Figure 4.8). The shapes are such that the proper products are
added instantly. This is shown in detail in Figure 4.8.
Comparison of the results of Figure 4.8 and those of the previous

Section shows that we indeed obtain the correct convolution points.

(b) The use of 16 fibers each of which collects light from a particular
spot. The proper fibers are combined onto a single element
detector which adds the light leaving the fibers’ output. In this

case we need 18 fibers and 7 detectors.

(¢) The use of a cylindrical lens which is set at 45° with respect to
the y-dimension. This orientation of the lens results in a
collapse of the data, which are then read-out by 7 detectors.

4-19
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’,.M Note that all three techniques are simple and equivalent. The choice
ol ' depends on the particular design, processor size, etc. Finally, note
,3%3 that the 4-channel A0 device can be replaced by a single-channel device
e in conjunction with frequency multiplexing. In this case, data

r; BO’BI’B2’B3 will be at frequencies fo,fl,fz,fs. Note however that the
i:E; ' A0 device linearity requirements are increased in order to avoid
;2&; spurious effects due to the presence of 4 RF frequencies.
o

. 4.8 BPAM A0 Processor Characteristics
;QE: The BPAM A0 processor allows us to perform a digital multiplication
ey every clock cycle (not every 2N-1 cycles as in DMAC). This technique
§f§ fully utiliges the inherent speed of optics. In principle, the system
?EQ can multiply (and if we desire accumulate) binary numbers as fast as the
E:ﬁ; lasers or A0 cells can be switched. State-of-the-art lasers can be
N switched every 0.3 nsec (this translates to a throughput rate of
. 3 GOPS). For a practical scenario, however, the limiting factor will be
izi the speed with which the A0 cell input data can be provided. With

2:& currently available A0 technology, a miniaturized unit of the processor

of Figure 4.7 could be operated at 250 MHs (see Section 4.7). In this
case the system’s throughput rate is 0.25 x 10g M-A/sec.

Ay
N2
$S§ The number of wavelengths Xi is equal to the number of bits in the
'tﬁ input. To avoid an extensive number of ki (and A0 channels) we use a
o base system higher than 2. A good choice is base 4 with 4 digits. Then
fﬁg we obtain 8 input binary bits and 16 output binary bits. In this case
5;3 we need 4 wavelengths, 4 A0 channels, 7 detectors, and 7 A/D converters.
1]
oy Note that in this case we also need 4 input light levels; that is, 0,1,2
v and 3.
Y
':}: To avoid extensive A/D requirements, we use time integration for
! summation of different number products (i.e., creation of inner products
‘i or vector-vector multiplication). The time integration can be
ﬁ;ﬁ
s
Srol 4-21
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: accomplished if each detector is followed by a charge integrator. For
:3 clock speeds of 250 MHz, and for summation of 7 products, the A/D

.3 requirements are 7 A/D’s with 8 bits each at 29 MHz.g

&ﬁ

. 4.7 BPAM AQ Response Analysis

$b In this Section we address the speed of the BPAM A0 processor and, in
" particular, assess the ultimate speed limit of a BPAM-based AOQ

. processor. There are three key components in the system of Figure 4.7:
::2 (1) laser diodes, (2) A0 cell and (3) output detectors and A/D’s. The
?E speed limit of the first component is usually in the range of a few GHz.
. For example, the LD53-OMF laser diode manufactured by ORTEL Corporation
f{ bas a modulation bandwidth of 8 GHz. This translates to ON/OFF pulses
:$ of 0.167 nsec which in turn translates to data rates of 1 bit/(2 x 0.167
ii nsec) = 3 Gb/s, assuming RZ data format. Thus, this component allows
b throughput rates of the order of 3 x 109 M-A/sec. The speed limit of ‘
o the last component (detectors and A/D’s) depends on whether we use

;‘y time-integration (i.e., detection of imner products instead of single
;12 products). For most applications of interest, we require vector-matrix
e multiplication or matrix-matrix multiplication. This implies that the
-2 desired outputs are inner products, which in turn implies that

} time-integration is preferable. For these applications, the A/D speed
?’ requirement is about 1/time for inner product formation. Assuming that
[}

2 we are forming inner products that consist of 32 or more products, and

we allow 0.187 nsec per product and 0.167 nsec per zero (each product is

E: followed by a zero), we find that the time required for the formation of
j; an inner product is 32x (0.167 nsec + 0.167 nsec) = 10 nsec. Thus the
= A/D speed requirement does not exceed 100 MHs which is within the

5. capabilities of the present A/D technology.

b: Let us now examine the second component, namely, the A0 cell. It can be
G shownlo that the modulation bandwidth 4f associated with a response

T falloff (in dB) of g, is

WD

i

M)
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o, where U_ is the speed of sound in the A0 crystal, n, is the refractive
!:3 index of the A0 material, and 'o is the diameter of the input laser beam
3*3 at the e-2 points. Let us assume that § = 3dB, Us ~6.32 x 103 m/sec,
N and n, = 3.31, which corresponds to a scenario with a GaP A0 cell (which
e is one of the "fastest" A0 cell materials). In this case Equation 4.5
fﬁ% becomes:
.;E
i 3
™ [ = 2.31 x ;9 m/sec (4.6)
" o
: To calculate Af and, thus, the A0 cell’s "speed of response," we need to
know the laser beam diameter l;. The diameter Ws of the focused laser
;ug: beam is given by:
{4
lac.
\:'..
> 'o = s.fL , (4.7)
)
oy
) 3 where S is the angular spot radius and fL is the local length of the
:¥2 lens used to focus the laser beam. The angular spot radius S is given
[ X
‘.t ) by
o 1 3 1.22 )
:Sg. S = 2 K(No)(D/fL) + =9 (4.8)
\\;\
o
L

where D is the beam diameter incident on the lens, n is the index of
refraction in air and K(No) is an explicit function of index ratio

No =n’/n (n' is the lens material index of refraction) and lens shape.
In Equation 4.8, the first term represents the contribution of spherical

aberrations to the beam size Wo. The second term represents the
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contribution of diffraction effects to the beam size Wo. Clearly, we
wish to optimize the value of D to give the minimum value °£.§’ This
optimization has been carried out numerically as a function of fL for
the case of a plano-spherical lens which has the smallest K(No) given by

1 2
K(N) = —— (N -2N + 2/N). 4.9
N,) —— (N2 - 2N+ 2/N) (4.9)

As fixed data we use: )\ = 780 gm (corresponding to a high-speed AlGaAs
laser diode), N° = 1.51106 (corresponding to BK-7 lens material). The
results of the calculations are given in Table 4.1 which shows the spot
size Wo as a function of focal length fL together with the optimum

D,D for minimization of Eq. 4.8.

opt’

Table 4.1 Wo as a Function of fL

fL(mm) Dopt(mm) Wo(pm)
1.00 0.31 4.14
2.00 0.52 4.92
3.00 0.70 5.44
4.00 0.87 5.85
5.00 1.03 6.18
6.00 1.19 6.47
7.00 1.33 6.73
8.00 1.47 8.85
9.00 1.61 7.18
10.00 1.74 7.35

The smallest possible focal length that we can hope to use with a
state-of-the-art GaP A0 cell is 2 mm, dictated by the crystal width
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necessary to provide uniformity in the lapping process of the A0 cell’s
transducer. From Table 4.1 we see that for fL = 2 onm, the diameter Wo
of the focused spot is 4.92 pym. Substituting for 'o = 4.92 gm in

Eq. 4.8, we find that the modulation bandwidth Af of the AQ cell cannot
exceed 470 MHz. Thus, each bit in the A0 cell will be represented by a
pulse that has a width of ® 2 nsec. This corresponds to a data rate
(assuming RZ data format) of

Data rate = 1/(2 + 2 nsec) = 250 Mb/s (4.10)

In conclusion, we find that the component that sets the limit, in the
BPAM A0 system, is the AQ cell. We also find that, in the best case,
the data rate in the A0 cell is = 250 Mb/s which corresponds to a
throughput rate for the BPAM A0 system of 250 x 108 M-A/sec.
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5. CIRCULARLY POLARIZING SAMPLING TECHNIQUE FOR COMPLEX MATRIX OPERATION

In the previous Section we have described Acousto-Optic architectures
which can be used for performing matrix multiplication operations.
Matrix multiplication is the most essential and major operation for our
applications of interest. So far, the elements in those matrices have
been treated as real numbers. In reality, however, the elements are
generally complex numbers. This is an unavoidable situation, especially
when the original signals are acquired from heterodyning processes that
yield the quadrature pair. Therefore it is very important to provide an
efficient method of handling complex numbers in order to achieve
efficient matrix multiplication operation. There are two conventional
techniques to accommodate complex numbers; both have serious problems.
The first method is a well-known software solution that realizes the
complex multiplication by first decomposing the operation into four
independent multiplications of real matrices (Figure 5.1) to form real x
real, real x imaginary, imaginary x real, and imaginary x imaginary
terms, and later synthesizes the real part and the imaginary part of the
final product by summing the square terms and the cross terms,
respectively. This method allows us to utilize a matrix multiplier for
real numbers without any modification in the hardware. The disadvantage
of this method is the slow speed which results from the necessity of
reading the buffer memory (which contains the real and imaginary parts)
four times. Thus, it takes four times longer than the multiplication of
real matrices.

The second method is a hardware solution. It requires a major
modification of the multiplier cells to accommodate complex numbers
(Figure 5.2). Each cell must contain four multipliers and two adders
and must compute the four terms in parallel. The problem with this

method is the tremendous complexity of its hardware. It requires that

the size of each cell be increased by a factor of four and that the
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nunber of the input ports be doubled. It is very difficult to realize

such hardware, especially in the A0 architectures.

In the following paragraphs we present a unique solution that is able to
maintain relatively high speed and also hardware simplicity at the same

tine.

A complex signal carries more information than a real signal.

Therefore, the manipulation of such signals becomes more computation
intensive. However, we can improve the data handling significantly by
arranging the input data in the most efficient way. One major
complexity in handling the complex matrix multiplication is the duality:
every sampled data point comes in the form of a pair, composed of the
real part time series and the imaginary part time series. Our approach
solves the complexity problem by forming a composite but single-time
series that is capable of representing both the real and imaginary I
parts. Thus, the elements of the matrix have a single number instead of
a real and imaginary pair. This arrangement can simplify the matrix
multiplication operation very significantly. The approach consists of
two steps: (1) a special sampling process and (2) the use of such

samples in the matrix multiplication.

5.1 Circularly Polarizing (CP) Sampling

A typical data acquisition process is depicted in Figure 5.3. First,
the original signal is received in the antenna and mixed with the local
oscillator of the target frequency by using an ordinary heterodyne
process that yields an analog quadrature pair representing the real part
and the imaginary part. In the conventional technique those signals are
digitized by A/D converters which are strobed by the same clock to
generate a digital quadrature pair in every sampling period, t. In the
present CP sampling scheme, the two A/D converters are strobed by clocks

having the same frequency but phase shifted by 180°. Also the sign of

the sample in each quadrature is alternated at every sample. The
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digitized results are interlaced to form a single string of sampled data
with the interval (1/2) tg- This composite time series has either a
progressive quadrature (1,j,-1,-j,...) or a regressive quadrature
(1,-j,-1,j,...), depending on the phase of the polarity alternation. We
call the former the right-hand circularly polarizing (RCP) sampling and
the other the left-hand circularly polarizing (LCP) sampling, indicating
the rotational orientation of the phasor. Appendix A shows that either
of the CP sampling schemes is capable of representing both real and
imaginary values of the original signal without loss of information and
free from the aliasing problem as long as the sampling frequency (l/ts)
is greater than the bandwidth of the original signal. It also shows
that RCP and LCP sampled signals are conjugate to each other. The
bandwidth requirement is identical to that of the conventional sampling
case; namely, the Nyquist criterion. The obvious advantage of this data
representation is simplicity. We now show the use of the CP sampled

data in performing matrix multiplication.

5.2 Matrix Multiplication Using CP Sampled Data

Ve st discuss a correlation operation as an example of the simplest
case of matrix-vector multiplication. Later we address the more general

case.

Consider a correlation operation function y(7) for signals h(t) and x(t)

where
y(1) = ] b*(t-7) x (t) dt (5.1)

and h(t), x(t), and y(7) are continuous complex functions and h°*(t) is
conjugate to h(t). Ve can translate the situation to the discrete CP
sample domain by

y.= L h x (5.2)




‘-

“
b Ad
L)
'

" where y, h, and x are CP sample functions and t and 7 are integers.
fzj Suppose the correlating function ht has finite duration, say, the
> duration of four data points. Then we can express the correlation
L operation in the form of a multiplication between the band matrix H with
bandwidth 4 and the vector X (see Figure 5.4). Now the input function

\ x, is a CP sampled function carrying the sequential quadrature

N information (1,j,-1,-j,...), and the correlating function h‘(t) is the
-~ conjugate of ht' Therefore, it has the corresponding LCP quadrature
sequence (1,-j,-1,j,...). The first element of the output vector Y is

= the result of the inner product between the first row of the matrix H

Y

A:: and the vector X, or

f.

% 1st element: (b)) (X,)+(~iby) (iXp)+(-bg) (-X)+(ib,) (-iX).  (5.3)
§

- Note that the phase of all the product terms turns out to be 0°.

Therefore, the first element can be expressed as:

K

3%

W

» =

: Y, = hlxl + h212 + h3x3 + h4x4 (5.4)
M

i: It is clear that this inner product calculation requires only the

;: multiply/add capability of real numbers. The second element in the

\

~ output vector is calculated similarly.

i 2nd element: (hl)(sz) + (-jhz)(—xs) + (-hs)(-jX4) + (jh4)(X5) (5.5)
e

\‘_

™ In this case, the phase of the entire term is a constant 90°. Thus, it
5y is appropriate to represent the second element as:
N

s

- jy2 = j(hlx2 + h2X3 + h3X4 + h4X5) (5.6)
E 5-7
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The phase of the product function between a row of H matrix and
the X column vector is always constant; thus real valued

multiply-add capability is sufficient to calculate the output
vector Y.
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so that the value Yo still remains real. In a similar way, we can
obtain the third and fourth elements:

-y = -(b X3 + X, + hoX. + b X) (5.7)
-jyg = -3 (8;X, + b X + hXe + b X;) (5.8)

It is clear that the rest of the elements can be obtained in the same
way. In any of these inner prcduct calculations, none of the complex-
valued multiplication capability is needed, owing to the CP sampling.

The output vector is again in the form of CP samples.

Thus, we see that once we represent the input complex signal in CP
sample form, the output is also in CP sample form, and we can carry out
the entire operation in the CP sample domain. The method treats all the
numbers as real numbers and the quadrature information is coded in the

data position itself.

In the case of the more general shift variant system, the matrix is not
necessarily banded and there is no repetition of the same series from
row to row as is the case in correlation or convolution operation.
However, the matrix-vector multiplication will still be accomplished in
the same manner as long as the data position represents the proper
quadrature. An exaample of positional coding of phase is shown in
Figure 5.5. An interesting characteristic of the matrix is that the
quadrature is progressing along the two-dimensional matrix and constant
along the diagonal orientation. As long as this quadrature based
pattern is used, we can perform multiplication of any matrices, using
only real numbers.

In summary, we believe that this new CP sampling approach solves, to a

great extent, the problems of the matrix-vector multiplication for
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P NOTE: The figure shows the positional coding of quadratures and
S amplitude of each element is arbitrarily set to 1.

'AC) Figure 5.5 Positional Quadrature Representation in
b Matrix-Vector Multiplication
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I complex numbers in a very systematic way. It is important to note that
0 the total operation is carried out in the CP sample domain, and that it
5 gives us the freedom to cascade such operations, or the freedom to

: iterate the operation by feeding back the result of one multiplication
) to the next without an intermediate domain conversion process.
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6. PERFORMANCE OF HIGH ACCURACY ACOUSTO0-OPTIC PROCESSORS

In this Section we consider the performance of the high accuracy A0
processors which we have developed (Section 4). It is of interest to
compare these systems with typical, state-of-the-art electronic devices.
In describing system performance, one measure that is usually employed
is the throughput rate (TR). However, when comparing different systems,
it is also of interest to examine the efficiency of the system (SE),
defined as the throughput rate per unit power, along with the net
multiplication speed (MS). The efficiency measure is important because
it demonstrates the power consumption necessary for a given TR. The
multiplication speed measure is useful because in certain applications
high MS rather than high TR is important.

The comparison analysis is done by calculating the SE and MS figures for
various families of state-of-the-art electronic multiplier

accumulators as well as for typical space-integrating and/or time-
integrating A0 processors that employ DMAC or BPAM. These calculations
are used as the basis for a simple, first-order, comparison which gives

a clear picture of the computational competitiveness of A0 processors.

6.1 Performance of Electronic NMultipliers

Current, state-of-the-art, electronic competition comes from three
families of electronic integrated circuits: (a) CMOS, (b) high-speed,
Silicon-based, VLSI, and (c) GaAs.

In the first category we have a variety of commercially available
multiplier/accumulator chips such as: (a) the Toshiba T8354 18 input
bit, 32 output bit (16/32 bit) chip and (b) the Logic Devices LMA 1009-1
16/32 bit device. The first device has an MS of 10 MHz and a power
consumption of 100 mW. This corresponds to an SE of 100 x

106 M-A/sec.W. The second device has an MS of 15 MEz with a power

8-1
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- consumption of 125 mW. This corresponds to an SE of 120 x
N 10% M-A/sec.V.
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In the second category we have various high-speed VLSI devices which are

AL 2

-~
y »

usually custom made for specific signal processing applications and can
contain a large number of multiplier/accumulator units. Westinghouse'’s
typical high-speed 8/18 bit VLSI is capable of an MS of 30 MHs while
consuming about 250 mW. This corresponds to an SE of 120 x

10° M-A/sec.V.
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Finally, in the third category, we have a number of CaAs LSI devices an
example of which is the Bockwell11 8/16 bit multiplier. This device

i

f{i forms the 18 bit product in 5.25 nsec which corresponds to an MS of 180
fi; MHz. Power dissipation is about 1.4W. Thus, the device’s SE is 135 x
2 10% M-A/sec. V.

[

The results of the above calculations are compiled in Table 6.1. From
this table we see that although the MS varies from family to family

(10,30,190 MHs, respectively) the SE remains about the same (~ 120 x
106 M-A/sec.W).

PR R R X

8.2 Performance of DMAC Based A0 Processors

PO | SGRa0N0

We begin the analysis of A0 processors by considering DMAC based
systems. We first examine the performance of the space-integrating

_ -
Ve A

g single detector AD system of Section 4.1. We choose to comsider this
' E system first because it represents a typical example of the ability of
. optics not only to multiply but also to compress (i.e., add) data.
fﬁ Let us assume that the input accuracy is 8 bits. In this case and for
iﬁ M = 32 the maximum value of the output convolution is 8 x 32 = 258,
: ? which requires an 8-bit A/D. State-of-the-art (chip level) 8-bit A/D’s
i operate at 30 MAs and consume 120 =W of powerg. Use of 3 such A/D’s in
:éi conjunction with an electronic data deflection scheme allows a
7
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conversion rate of 90 MHz at a power consumption of about 500 mW. Such
a rate allows data periods of about 11 nsec. The convolution operation
is completed in 2N-1 = 15 cycles and thus the MS is 6 MHs and the TR is

8
192 x 10

bulk part of the power consumption comes from the laser and the A/D’'s.

M-A/sec. For the purposes of this analysis we assume that the

A detailed analysis shows that the laser consumption is about 5 W.
Thus, the total power consumption is 5.5 W and the SE is 35 x

108
low MS figure. To improve this figure let us assume that 15 A/D’s are

M-A/sec.W. This is a rather poor figure and is partially due to the

used so that effective conversion rates of 450 MHz are achievable. 1In
this case we can use clock frequencies of 900 MHz and have an MS of

30 MHz, a TR of 960 x 10° M-A/sec and an SE of 128 x 106 M-A/sec.VW.
Comparison of these figures with those of the electronic cases, however,

shows that the AD system does not offer any significant SE or MS
advantage.

We now examine a different A0 system architecture, specifically an
array, non-compressive processor. This system is similar to the one of
Figure 4.2, but it uses a cylindrical lens (with power along x) in
conjunction with M detectors for the individual computation of the M
products. In this case, for an 8/16 bit system, the maximum convolution
value is 8 which requires a 3-bit A/D. We assume that a set of 8-level
comparators will be used because of the relatively low resolution
required. For 8-level comparison, 3-dual level comparators are needed
along with some dedicated logic. A typical example of a high-speed
comparator is the Advance Micro Devices AMB687 which allows us to build
an 8-level comparator circuit which operates at about 300 MHs and has a
power consuamption of about 800 mW. This allows a clock frequency of
800 MHs which translates to an MS figure of 20 MHs. Thus for M = 32,
the systea’s TR is 6840 x 106 M-A/sec. To calculate the SE figure we
need to calculate the laser power. If we use one laser diode per AD

channel we find that 5 oW, 20% efficient, laser diodes are sufficient.
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Table 6.1

TYPICAL PERFORMANCE OF ELECTRONIC MULTIPLIERS

1/0 MS |POWER SE

FAMILY TYPE (BITS) | (MHz) | (W) (l-A/sec L)}
CMOS Toshiba T6354 16/32 | 10 |o0.100] 100 x 10®
CMOS Logic D. LuA1009-1| 168/32 | 15 [o.125| 120 x 108
High Speed | Westinghouse 8/16 30 0.250 120 x 106
VLSI

GaAs Rockwell 8/16 | 100 1.4 135 x 10°
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In this case, the total laser diode power consumption is 25 x 32 nW =
800 a¥W and the total power consumption 26 W. This gives an SE figure of
23 x 106 M-A/sec.W. Comparison of the system’s performance figures with
those of the electronic counterparts shows that the A0 system, once

again, does not offer any significant advantage.

We now examine the time-space integrating systolic A0 processor of
Section 4.3.

For minimum detection errors, and with state-of-the-art components, a
8/18 bit system with N =K = 16 and M = 8 is realistic. The TR of such a
system depends on the data loading time. Currently available AQ cells

allow for bit widths of 2 nsec. Thus, each multiplication requires

2 x 8 x (2 +2) rn~ec = 64 nsec. This corresponds to an MS of 15.6 Miz
and »a TR of 8 x 8 x 15.8 x 108 M-A/sec or 109 M-A/sec. To calculate the
power consumption we take into account the laser diodes and the A/D’s
only. An 8 x 18 laser diode array (with 5 oW, 20% efficient diodes)
requires an average power of 1.6 W. The power consumption of the A/D’s
depends on the number of A/D’s used and the operating frequency. For
full use of the system’s MS we need to use a combination of serial and
parallel detector read out. With such a scheme we need 84 7-bit A/D’s,
32 6-bit A/D’s, 16 5-bit A/D’s, etc., that operate at 16 MHz. If we use
the 30 MHs 120 nW 8-bit A/D’s we can replace the 64 7-bit A/D’s (i.e.,
two elements per A/D). The total power consumption of these devices is
3.84 W. This figure represents ~ 70% of the total A/D power
consumption. Thus, for our purposes, the total power consumption is

~ 7.1 W and gives an SE of 141 x 106 M-A/sec.W. Comparing these figures
with those of the electronic competition (Table 8.1) we find that the AD

system does not offer any significant performance advantage.

In conclusion, we see that the DMAC-based architectures do not offer any

significant performance advantages (Table 8.2) when compared with
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" TYPICAL PERFORMANCE OF DMAC AO SYSTEMS
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: ‘ 1/0 MS  |POWER SEC

- TYPE (BITS) | (MHz) | (W) (M-A/sec W)
b SPACE INTEGRATING 8/16 6 |55 | 35 x10°
M (1 Detector, 3 A/D’s)

e :

: SPACE INTEGRATING 8/16 | 30 |e6.8 | 128 x10°
- (1 Detector, 15 A/D’s)

- SPACE INTEGRATING 8/16 | 20 |28 22.7 x 10°
& (32 Detectors, 32 Comparators)

» TIME/SPACE INTEGRATING 8/16 | 15.6 | 7.1 | 141 x 108
%
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their electronic counterparts (Table 6.1). Similar performance is
characteristic of other architectures that have appeared in the open
literature but for reasons of space have not been included in this
Section. There are two main factors which limit this performance.

First, the algorithm itself takes 2N-1 cycles to complete the
convolution. This results in the requirement of at least one bit-serial
propagation and thereby substantially reduces the TR (which in principle
can be high). Second, optics performs only part of the full,
high-accuracy multiplication, namely, the convolution, and subsequently
requires the "help" of power-consuming electronics (e.g., A/D’s) to
complete the operation. This results in an increased power consumption

and a decreased SE.
Based on the above observations we conclude that in order to improve the
MS and SE figures, we need to decrease the time required for completion

of the convolution and eliminate the A/D’s.

8.3 Performance of BPAM Based A0 Processors

Since the BPAM operation requires one clock cycle, the system TR is
equal to the speed with which we can address the AQ cell. In

Section 4.7 we showed that at best the A0 device can be operated at
about 250 MHz which corresponds to a TR of 250 x 106 M-A/sec. and an MS
of 250 MHz. The power consumption of the system depends on: (a) the
number of bits in the input and (b) the number of A/D’s used. To avoid
an extensive number of wavelengths we need to use a base system higher
than 2. If we use base 4 with 4 digits then we have a processor of
8/16 bits. In this case we need 4 laser diodes, 7 detectors and

7 A/D’s. 1If we use the 8-bit 30 MHz 120 mW A/D’'s, then we can read out
the output at a rate of 29 MHz. Each such output will correspond to arn
inner product which is the sum of 8 number products (the summation is

performed in time, at the detectors). In this case the A/D power

consumption is 7 x 120 mW = 840 oW. Adding to this figure the power
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o
) consumption of the laser diodes (4 x 25 mW = 100 mW) we find that the
o power consumption of the system is 940 mW. This corresponds to an SE of
2 266 x 10° U-A/sec.¥. |
y Comparing the MS and SE figures of the BPAM-based A0 system with those 4
N of the DMAC based AQ systems (Tabla 6.2), we find that the MS figure of
E; the BPAM system is higher by about an order of magnitude. This
K"y improvement is expected since the time requires for the BPAM is reduced
o by a factor of 2N-1. On the other hand, because MS is increased, one
{j might expect SE to increase proportionally. This is not the case,
:2 however, because SE is increased only by a factor of 2. This is due to
L the fact that BPAM requires 2N-1 output detectors and A/D’s for the
: detection/conversion of a single product. This translates to additional
o power consumption which partially offsets the MS improvement.
,;j If we now compare the performance of the BPAM-based A0 system with that
. of the electronic competition (Table 8.1), we find that the BPAM system
i has a MS figure that is higher by about an order of magnitude than that
?; of Silicon-based devices. However, this advantage essentially

disappears when compared with GaAs devices. Thus, once again, we find
that for all practical purposes the A0 systems do not offer any
significant performance advantage (e.g., an order of magnitude

5 improvement in SE and/or MS). One of the main reasons for this behavior
- is the fact that the available algorithms (both DMAC and BPAM) require

; power-hungry post-detection electronics (i.e., A/D’'s and comparators)

for conversion of a multi-level analog signal to a binary output.

A method of overcoming this problem, is to eliminate the presence of
analog signals by employing binary valued Ai’ Bi' i=0, ..., N-1 input

levels. In this case the various products AiBi can take only two

Y

values, O and 1. This implies that, in the absence of an optically

implemented product summation, the N2 detectors (one for each product)

simply detect the presence or absence of light. Subsequently, their
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binary outputs are used to directly drive N2 pulse-counting electronics
(e.g., counters) and not A/D’'s or comparators. Once these devices count
M such pulses (for an M-element inner product) they drive properly
arranged digital adders that perforam the AiBi product summations. The
outputs from the adders subsequently drive a shift-register/accumulator
that performs the final weighting and summation operations. An example
of such an electronic arrangement is shown in Figure 6.1 for the case of

a 2-bit multiplier.

In optimizing such an architecture, it becomes immediately apparent
that, aside from its delay properties, the A0 cell is used as a simple
optical switch. In fact, to provide this switch function, the AD cell
is unnecessarily complex because: (a) it requires RF carriers, mixers
and amplifiers, (b) it requires a rather complicated optical system, and
(e¢) it requires an 8-channel optical multiplexer (for a 8/16 bit
system). A far simpler and faster system can be realized by the use of
two sets of N laser diodes in conjunction with 2N2 detectors and N2 AND
gates. An example of a possible arrangement of such a system, is shown
in Figure 6.2 for a 2-bit multiplier. Other possible arrangements
involve the use of fiber-pigtailed lasers in conjunction with the

fiber-optic 1:N splitters, or overlapping laser beams with N2 detectors

~ (located at the cross points) in conjunction with threshold detection,
g

f: etc. Note that the speed of the optical part of any possible

v-.v*‘

implementation of the system can exceed 3 GHz even assuming the use of
state-of-the-art components. Thus, the throughput limiting factor is
the AND gates together with the counters that follow them. Finally, a
simple analysis shows that a scheme of parallel input counters, which

are used in order to obtain the sum of 1’s for each convolution point,

is preferable to the scheme shown in Figure 8.1. This is the well known
Daddal2 scheme for implementing a fast many-bit (> 16/32) digital
multiplier.
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s Thus, we have formed a simple multiplier system that does not require

any A/D’s or comparators and which forms the A B products in a single

. clock cycle. The factor limiting the speed of the device is the

f'? electronics (~ 200-300 MHz with MECL II logic) and not the optics

i;i (> 3 GHz). A close look at the device, however, reveals that optics is
:E: used only for the high-speed interconnections (between data source and
‘;i multiplier) and not for the actual product computation which is

Lo performed exclusively by dedicated digital electronics. Thus, the

29 efficient implementation of binary-valued BPAM in conjunction with

fi? binary detection results in a system where the computational role of
::& optics is practically zero. We discuss such a device in more detail in
:— Section 7.

Z;j 6.4 Performance Comparison Conclusions

b In this Section we have examined the performance of the A0 processors
'E\: from the points of view of system efficiency and multiplication speed.
.;j It is found that DMAC-based A0 systems do not compare favorably with
Ef: existing state-of-the-art electronic multipliers. BPAM-based AD

is' systems, although superior to DMAC-based systems, have a performance
-1 which is about the same as that of existing GaAs devices. An attempt to
ﬁ¢3 use BPAM systems with digital counters, instead of A/D’s or comparators,
;; results in a system in which optics is used for the high-speed

; < interconnections but not for computations.
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a5 7. OPTICALLY ADDRESSED ELECTRONIC DIGITAL MULTIPLIERS

=

=

h-T 7.1 Introduction

:E: In the previous sections we have examined techniques that allow Acousto-
:&E Optic processors to perform digital-accuracy arithmetic computations.
v Ve have shown that when the multiplication speed and system efficiency
o figures are used as performance measures, the A0 systems have no

j;:j significant advantage over existing state-of-the-art digital electronic
iEﬁ multipliers. However, one way in which optics can be used to improve
;:“ the performance of electronic arithmetic units is the natural ability of
,fx, optics to perform interconnections. There are several reasons for this
ﬂ?i and they have been documented in the excellent paper by Goodman

e et al.:13 (1) optical interconnects (0I) allow freedom from capacitive
- loading effects thus allowing high speed signal propagation, (2) 0I

“ " offer immunity from signal interference effects which allows for massive
ﬁ_ﬁ 2-D interconnects, (3) OI do not have to be planar (as opposed to

gf: electronic interconnects), (4) if open space'OI are used, then some

R reprogrammability can be achieved via "dynamic interconnections' and

;{, (5) optical signals can be injected directly into electronic logic

f:j devices.

W The above reasons clearly show the advantages of 01 over their

nﬁ; electronic counterparts. This chapter addresses the use of 0I in

‘jﬁj processors that can be applied to the APAR problem. In Section 7.2 we
::ﬁ briefly discuss the concept of array processors for matrix-matrix
4 . multiplication. In Section 7.3 we address some practical issues which
’ﬁ 3 are necessary for the realization of optically-interconnected array

':E; processors. Finally, in Section 7.4, we discuss the prototype

_2: optically-addressed ECL multiplier which we have fabricated.
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7.2 Optically Interconnected Array Processor for Matrix Multiplication

A large pumber of algorithms (or parts of algorithms) used for the APAR
problem can be expressed in terms of matrix multiplications. Typical
examples can be found in some of the algorithms used for the eigensystem
solution, presented in Section 2, as well as in the Gram-Schmidt
techniqpel’z presented in Section 9. Consider an example of matrix-
matrix multiplication. Let matrices A and B each of dimensions MxM be

represented by:

A= [aij] (7.1)
and
B = [bij] (7.2)
Their product C is given by
C=AxB (7.3)
where
¢35 = L ailpbjl (7.4)

Another way of expressing C is through outer products AiBi; i.e.,

C= [AIBI + Asz + L. AIB“] (7.5)
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Figure 7.1 Square Array Processor for Matrix-Matrix Multiplication
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A simple processor that implements Equation 7.5 is shown in Figure 7.1,
and consists of a square array of MxM pultiplier-accumulator units

N (MAU). In this system, the column data Ai and row data Bi are

Iy broadcasted instantly along the columns and rows of the array

e processor. At each clock cycle there is a new outer product formed

? which is consequently added to the previous product. In this fashion
3 the total number of cycles needed for a full matrix-matrix

¢ multiplication is M. This design is not suitable for VLSI circuit
design because it needs global communica.tion.15 Thus, when VLSI
implementation is desired, one has to configure the processor of
Figure 7.1 in a systolic architecture so that only local

v interconnections are used. In such a scenario, the number of cycles
needed for a full matrix-matrix multiplication depends on the specific
g systolic implementation used. For a square array, similar to the one
IE of Figure 7.1, this number is of the order of 2M. Thus the "globally
" interconnected® array of Figure 7.1 offers the advantage of improving
the processing speed by a factor of 2. Note that when high frequency
operation is desirable () 500 MHz) the locally interconnected array
processor probably requires the use of 0I for data transmission. This
is because at such frequencies the number, paths, lengths, and

h terminations of microstrip and strip lines are extremely critical in
order to avoid effects such as capacitive loading, delays,
overshoot/undershoot etc (an extensive but simple treatment of this

'y issue can be found in Reference 18). Thus, since OI seem to be
necessary for high frequency operation, it is logical to use 0I in a
global rather than local fashion.

) 7.3 DOptical Interconnects for Array Processor

In this section we analyse the 0I for the array processor of
'S Figure 7.1. As we have described in the previous section, the column
n data Ai and row data Bi need to be broadcast instantly across the

array. This implies that we need to address M different MAU inputs
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TRy with the same data. This in turn implies that we need to split the
332 data 1:M. Thus, we need to address a simple technique which uses

‘Ej state-of-the-art technology and which allows us to drive M optical

?“d channels from one optical source. Before we describe such a technique
_ i it is of interest to discuss a technique for coupling the optical
’"ﬂi source (laser diode) into a fiber.

o A schematic drawing of a fiber-optic adapter which we have developed
e for efficient coupling of the output power from a Mitsubishi ML4402
:é: laser diode into a fiber of core ) 100 um is shown in Figure 7-2. The
:&: output beam from the laser is elliptical with beam divergencies of 33°
Ty and 11°, full angular spread at the half-power points, along the major

and minor axes, respectively. To collect this angular spread directly
into a fiber without the use of lenses requires that the fiber end face
be positioned much closer to the diode emitting surface than the

windowed laser package allows. Accordingly, we have removed the window

and protective can from the laser to allow complete access to the

o~
e cens

?:%: emitting surface.

54

¥

R For the fiber, we have chosen a glass fiber of 100 g core diameter and
2N 140 ym cladding diameter, since this represents a fiber having one of
Ay

;f: the highest aspect ratios readily available. Although this factor is
“::4 not critical for the multiplier application (see Section 7.4), it is an
N
Wy important parameter when the outputs from many fibers are combined in a
&u{ fan-in or fan-out as is the case of the array processor or the case of
$:i the application to look-up tables discussed later in Section 8.3.

=Y
‘$:3 Thus, to intercept all the laser output, out to the half-power points,
od,
A

into a 100 um core fiber requires that the emitting surface-fiber face

separation be less than 160 ym. The fiber-optic adapter shown in

FPigure 7.2 accomplishes this, taking into account the manufacturing
tolerance levels in the height of the diode surface above the base of
the laser.
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1 " The adapter comsists of a plexiglass rod bored at one end to be a slide
;ﬁiﬁ . fit to the diameter of the laser diode base. The diode is inserted
ﬁgﬁ into the adapter until it bottoms on the machined step in the adapter
hone and is cemented to the adapter using UV-cured epoxy. In this way the
?. diode emitting surface is precisely located (within diode manufacturing
':ig tolerances) with respect to the step in the plexiglass adapter. The
%5&% cemented diode sits completely within the adapter to allow convenient
U attachment of the insulating adapter to a circuit board without danger
- of shorting the diode base (which forms one of the diode connections)
Agtﬁ to the board. The other end of the adapter is machined and threaded to
jJ;ﬁ accept (in this case) a standard Simplex ferrule connector. The length
MY of the adapter above the step (which locates the base of the diode) is
f;-l such that a ferrule, polished to its standard length, when inserted
'ﬂ;, into the axial hole in the adapter is positioned on axis and with the
fiit face of the ferrule located within the distance of 180 gm required to
ey intercept the divergent output beam of the laser. This adapter has
‘ proven to be a simple, efficient, and reproducible means of coupling
jaﬁ the output from the laser diode into a 100 um-core fiber. All of the
$SE hundred diode-adapter assemblies fabricated so far have given the full
D ? : maximum diode output of § mW measured at the end of the fiber for diode
ii'; currents { 10 mA above the threshold current.
o
3&5& Splitting one optical channel into M optical channels can be achieved
Qf\ via the use of: (1) holograms, (2) star couplers in conjunction with
::f: fibers and (3) fiber-optic splitters that use resilient-ferrule
f:;i connectors. The first approach is practical in applications where the
;jff ' M optical channels distribute their information in a relatively small
-RQK area; e.g., 100-400 cnz. The second and third techniques allow signal
.;A% ) distribution without any practical restriction in area or path length.
:%3 Star-couplers, however, are more expensive and have a higher loss (for
‘:3: M =~ 40). For these reasons we have decided to use the resilient-
:tf% ferrule connector approach (RFC).
ff?
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. In the RFC approach (Figure 7.3) the optical source, usually a laser
.f diode, is coupled to a relatively wide core diameter fiber (e.g., 420
f: pm). The output of the wide fiber produces a uniformly distributed

R spot of light. We then pack a number of smaller diameter fibers into a
& resilient-ferrule connector (Figure 7.3), e.g., 7 fibers of 140 um
Sl cladding and 100 gm core. Thus, we create an effective active area of
o 380 um diameter which is covered by the cores of the fibers. Each

§ fiber receives nearly the same amount of light. The other end of each
3 fiber is terminated in a separate connector which is used for the MAU

s connection. Note that by reversing input/output ends, we can use the

% RFC arrangement as an M:1 combiner. This is exactly the way we use it

for the look-up table residue approach we discuss in Section 8.3. Note

N that the RFC technique has losses that are comparable to those found in
; connectors (about 0.5 dB) and is less costly since it eliminates the
T; expense of the coupler itself.
K,

. For efficient coupling, we need to maximize the core-to-cladding ratio

(CCR) of the small fibers as well as the total effective receiving area
- of the fiber bundle in the RFC (shaded area in Figure 7.3). The former
is needed in order to maximize the effective receiving area per fiber.
The latter is necessary in order to minimize the amount of unused
light. Maximizing the CCR implies that we avoid, if possible, the use
of single-mode fibers which have a very small CCR of the order of 0.04
(e.g., 5 um core and 125 um cladding). Note, however, that single-mode
fibers are the only choice if multi-Gb/s data rates are needed. In a
e multi-mode fiber, typical CCR’'s are of the order of 0.7 (e.g., 100 um
- ‘ core and 140 um cladding). For these fibers, and at A\ = 850 nm, the
typical transmission bandwidth is about 100-200 MHz-Km. For our
N application, maximum distances of the order of a meter are expected.
. For these distances effective data rates of 2 1 Gb/s can be easily
achieved. In fact, we have shown that for 2 meters of 50112 AMP fiber.
data rates of > 1.2 Gb/s ~an be achieved. Maximizing the total

receiving area is equivalent to efficient fiber packaging One a-
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. easily show that for efficient packaging, a symmetric fiber arrangement
N similar to the one shown in Figure 7.3, is needed. In such an

o0 arrangement, the total number of fibers Ho and the overall diameter D
. are given by:

X

- M =1+3k (k + 1) (7.6)
t: °

L D=(2k+1)d (7.7)
z.

X

-

‘J where k = 1,2,3,... and d is the cladding diameter. In this case the
E; aspect ratio Ao of the total area is

p

xl

&

n A= [1+ 3k (k+ D]a/(2k + 1)2 (7.8)
)

N-'

&

5 where a = (dl/d)2 is the aspect ratio of a single fiber of core

W diameter dl. In Table 7.1 we show, as a function of k, the total

5 number of fibers H°,~the array diameter D, the overall efficiency 7,

-i and the core diameter d2, of the laser coupling fiber. For these
o calculations we assume that each fiber in the bundle has a 100 um core
n and a 140 um cladding, i.e., a = 0.51. For demonstration purposes, we
iz have implemented the cases for k = 1 and 2 using 50112 AMP 100 um/140
E: pm fiber. Typical output radiation patterns are shown in Figure 7.4.

S

In both cases we obtain coupling efficiency results that are in
excellent agreement with the figures of Table 7.1. Note that our
experimental results show that for M = 16 and 19 there is little

- difference in f. Thus, for all practical calculations involving M = 16
'5 one can use the M = 19 data. Also note that because of practical
reasons (availability of proper fibers, connector dimensions, etc.)

M = 19 is probably the upper limit of the RFC technique.
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' Table 7.1

‘4

:‘ k M D (m) 9 d (um)
1 7 420 0.40 380

r 2 19 700 0.39 660

K 3 37 980 0.39 940

4 61 1260 0.38 1220
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* Figure 7.4 Output Radiation Pattern from 1:M RFC
- Splitters with M = 7 and 19.
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;b We now discuss some issues associated with the amount of optical power
%ﬁ necessary for the interconnections. Let us assume that we are dealing
g‘ *  with a 18 x 16 array processor which we intend to interconmnect using
3: : discrete detectors. For high data rates (e.g., several hundreds of

;« MHz) we need the detector to interface to an impedance of about 50

*3 ohms. Thus, for a 1V swing, the detector needs to provide 20 mA.

g

Current state-of-the-art high speed (rise time { 0.5 nsec) pin diode
B detectors (e.g., Motorola MFOD 1100) have a responsivity of 0.3 uA/uW.

Thus, we require about 87 mW of optical power incident on the detector.

*{: Since M = 18, the individual fiber coupling efficiency is 0.39/18 =

i} 0.024. Thus, the total optical power incident on the RFC needs to be
an 67/0.024 oW = 2.8 W. This power is beyond that obtainable from state-
3 of-the-art laser diodes so that buffers must be incorporated between
;ﬁ detectors and MAU inputs. A typical example of such a buffer unit is
o the Advance Micro Devices Am 8687 comparator which allows for data

fﬁ rates of up to 300 MAz. This device requires a minimum input of 5 mV
which corresponds to a total laser power of 14 aW. State-of-the-art

low-cost laser diodes, such as the Hitachi HLP 1400, can deliver up to
20 oW at data rates in excess of 800 Mb/s. It is thus our conclusion

o that if the discrete detector/buffer approach is used in conjunction
- with existing, low cost technology, then the 0I for a fully parallel 16

%ﬁ x 16 array processor with data rates in excess of 300 Mb/s per channel

is can be built. If the electronic MAU’s are capable of following the

kg above data rates, then the system MS will be 300 MHz and the total

» throughput rate will exceed 18 x 16 x 300 x 106 M-A/s = 78 x 109 M-A/s

ji which is obviously a tremendous processing capability. Note that if

7 the detectors can be integrated with the MAU chip, then the effective

‘f' impedances will increase perhaps by an order of magnitude. In this

;b : case the buffers are not needed and the 0I that consists of existing,

E: low-cost laser diodes/RFC/detectors can deliver data rates of the order
N of 1 Gb/s.
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In the following section we present an experimental, optically
addressed, 4 x 4 bit ECL MAU that uses components similar to the ones

we have been considering.

7.4 Prototype Optically Addressed ECL Multiplier -

To illustrate the capability of optical interconnections we have
fabricated a 4x4 bit optically addressed multiplier based on ECL logic.
The complete arrangement is shown schematically in Figure 7.5.

The optical data generator consists of eight pulsed laser diodes
(Mitsubishi Type ML 4402) which provide the two 4-bit words. These
laser diodes are driven from a common pulse-generator source (Hewlett
Packard Type 8082A) which is fanned out to eight lines each of which is
connected to the transistor drive (Motorola Type 2N5943) of each laser
diode. Each laser diode is housed in a fiber optic adapter (described
in Section 7.3) which accepts a standard Simplex fiber connector. This
optical data generator may be driven at the maximum frequency of the
pulse generator (250 MHz for a 50% duty cycle) thereby providing the
equivalent of a 500 MHz binary (0,1) data rate.

The optical interconnect consists of eight fiber optic lines fabricated
from 100 pm core/140 um cladding cable (AMP 50112). These lines are
provided with Simplex connectors at either end for coupling the laser
diode output from the data generator board to the optical interface/ECL
multiplier board.

A schematic diagram of the circuit used for the optical interface/
multiplier is shown in Figure 7.6. The optical interface is provided
by pin diode-comparator combinations. Each optical input signal
corresponding to a single binary bit is fed to a pin diode detector
(Motorola Type MFOD 1100) housed in a Simplex fiber connector mount to

accept the fiber-optic interconnection. The output from each pin diode
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“ is in turn fed to a comparator (AMD Type AM 6687) which generates a
:3 standard ECL logic pulse provided the amplitude of the output pulse
Eﬁ from the pin diode exceeds a preset threshold ievel.
!
‘5 Insofar as the multiplier itself is concerned, there are several
é;’ architectures available for configuring electronic gates to perform
5 multiplication.17 For the present demonstration we have chosen to use
g&h the Pezaris arrangementls which utilizes full adders as shown
.- schematically in Figure 7.7. Thus, for two 4-bit binary numbers A =
IRK _ C 1eR
‘*Q 84393,3, and B = b3b2b1b0’ the product Z = A*B = (aaazalao)O(bsbzblbo)
? o may be written in the form
Bl
’!"L;
{»
to e
o 2% 2P 2P b
v agdy  3by by aghy
235 390y 215y 20%1
Wi
o 235, 252 a;bg )
a2
1
'
J
. Ly Zg Zg N 23 Zy % Zo
-
f:Q corresponding to the practical implementation of Figure 7.7.
%ff The building block of the multiplier is a 2x1 bit array multiplier from
'?S the MECL Series (Motorola Type MC 10287) which is a dual package each
fﬁ half incorporating two input AND gates, for forming the binary bit
S products followed by a full adder for summing the products, with
i internal carry lookahead for high speed operation. The logic diagram of
- the array multiplier block is shown in Figure 7.8 and is particularly
suited for use in the Pezaris architecture. Thus, the data output from
" the interface comparators are fed to the inputs of six MC 10287 packages
R the outputs of which provide the products Z1 to Z7. The least
:Egi significant bit product Z0 = aobo is provided by a single AND gate.
'O
A 3: 7-17
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Figure 7.7 Schematic Diagram of the Pezaris Multiplier Arrangement
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A strobed latch/LED display provides visual readout of the product from
the multiplier. Each of the product bits from the multiplier is fed to
a latch (Motorola Type 10175) which is strobed by a suitably delayed
pulse derived from the same pulse generator used to produce the optical
data. Thus, the latches are strobed synchronously with the data, each
output pulse from the latches driving the specific LED associated with
each product output bit.

Layout and fabrication of the double-sided boards was carried out on a
CAD/CAM facility. In the board layout, particular attention was paid to
the design to ensure high-speed operation. A photograph of the

assembled boards is shown in Figure 7.9.

For the purpose of exercising the multiplier, the input words A and B
are varied by connecting the appropriate fiber-optic lines between the
data-generator and multiplier boards. A composite record showing the
input/output pulse responses from the multiplier board is shown in
Figure 7.10(a). The upper trace on this record corresponds to the input
data-bit pulse from the interface comparator (all eight pulses are
coincident in time) followed, in sequence, by the eight output bit
pulses corresponding to the products Z0 to Z7, respectively. This
record has been obtained by varying the input word A keeping the full
input word B (i.e., b3 = b2 = b1 = bo = 1) fixed. From Figure 7.10(a)
it may be seen that the delay time between the input data pulse and the
output product pulse increases from Zo through Z6 with the most
significant bit Z7 (the final carry bit) delayed somewhat less than Z6'
The various delays measured from Figure 7.10(a) are compared with those
expected from the multiplier architecture used in Table 7.2. For the
latter, we have characterized the delays in terms of the unit gate delay
time A. Thus, the propagation delay times of the AND, OR, and XOR gates
incorporated in the multiplier blocks are 24, 2A and 3A, respectively.
Taking a value of A = 0.3 ns (corresponding to a propagation delay of

an ECL NAND gate), we obtain the values shown in the last column of
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Figure 7.10 (a)

(b)

Composite oscilloscope record showing in sequence from
top to bottom, the relative delays between the input
data bit pulse, and the various output bit pulses
corresponding to the products Zo to Z7, respectively.

Composite oscilloscope record showing in sequence from
top to bottom, the input data pulse and output bit
pulses corresponding to Z_ (minimum delay) and Z
(maximum delay) for maximim operating speed of tge
multiplier (220 MHz).
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J} Table 7.2

gl Input to Zn Propagation Delay Times

0 Estimated
N Measured
s (ns) A ns (A = 0.3 ns)

2 2 0.6

3
i
&N

o

3.5 8 2.4

[ I
[

7
Y

4.5 16 4.8
6.5 28 7.8
8.5 30 9.0
8.5 31 9.3
11 35 10.5

BN N N NN
b R - R 7 L DR N /4

7.5 33 9.9
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Table 7.2. These are in good agreement with the measured values. The
total multiplication time is dependent on the value of the input words.
The maximum time is evidently that for which the product includes the
28 (Zs) bit. For the present arrangement this propagation delay is
measured to be 11 ns which is in reasonable agreement with the

manufacturer’s specification of 14 ns.

In characterizing the performance cf multipliers we wish to distinguish
between the total multiplication time and the throughput rate. In the
present arrangement, the maximum throughput rate is governed by the
requirement that the data bit pulse be sufficiently wide that all of
the product bit pulses be present during the strobe pulse. Thus, the
minimum pulse width is given by the maximum difference in propagation
delay among the product bit pulses, i.e., the difference in propagation
delay for Zo and Zs. From Table 7.2 this is measured to be 9 ns.

Thus, the present multiplier has a maximum data throughput rate of 110
MHz. However, we note that if a truly pipelined architecture is used
the throughput rate may be significantly increased. While we are not
able to do anything in the present demonstration at the chip level we
note that we can exercise the board at a higher data throughput rate
than is dictated by the strobe requirements. An example of this is
shown in Figure 7.10(b) which shows from top to bottom, the input data
pulse, the Zo output bit pulse, and the Z6 output bit pulse,
respectively, where the input data pulse width has been minimized while
still maintaining all output bit pulses. From Figure 7.10(b) it may be
seen that a data throughput rate of 220 MHz is possible if suitable
delays are introduced in the circuit so that the output bits can be
strobed simultaneously. This throughput rate is limited both by the
comparator delay time in the optical interface and by propagation
delays in the multiplier chips themselves.

In conclusion, we see that existing fiber-optic and electronic

technology can be used in order to fabricate a fully parallel optically




s

P

interconnected square array processor for matrix-matrix multiplication.

With this existing technology we expect multiplication speeds that
exceed 200 MHz (assuming a pipelined architecture). Such an array
processor is obviously easier to implement than the Acousto-Optic
processors we have presented in Section 4. This further demonstrates

that Acousto-Optic systems cannot compete with existing electronic
technology.
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) 8. RESIDUE LOOK-UP TABLE ELECTRO0-OPTIC PROCESSING
o
ﬁ;: 8.1 Introduction
E A
0 In this section we discuss a residue arithmetic approach for high-speed
’:i: Electro-Optic processing. As we have shown in Section 5, Acousto-Optic
) binary processors cannot compete efficiently with existing digital
*n

electronic counterparts. One of the reasons is that Acousto-Optics
performs only part of the operation, i.e., the convolution, and
power-hungry electronics is needed in order to convert the mixed-binary

data of the convolution into a conventional binary form. If operation

'gﬁ‘ in the mixed-binary form would be possible for many processing steps,
};: then the system efficiency would improve because of the fewer

,:3 conversions that would be necessary. Unfortunately, this is not the

f}; case. Thus we have decided to explore other arithmetic schemes which

LAl " allow many operations to be performed before conversion into a more

51 conventional arithmetic is needed. One such possibility is residue

i¢¢ arithmetic.

o

! In the following Section 8.2 we present a brief discussion of the basics
fg; of residue arithmetic. In Section 8.3 we describe a possible look-up
2'3 table (LUT) technique for high speed processing and in Section 8.4 we
,'E discuss our prototype LUT. In Sections 8.5 and 8.8, we show how one can
D convert from binary-to-residue and from residue-to-binary, via

7?; utilization of LUT techniques. In Section 8.7, we discuss issues

‘ié associated with hardware minimigation. Finally, in Section 8.8 we

':; discuss an example of residue LUT processing, a square array processor
(LY for matrix-matrix multiplication.

o
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8.2 Residue Arithmetic Basics

Residue arithmetic, because of lack of carries, is probably the fastest
way of performing addition, subtraction, multiplication and various

polynomial trsnsfornations.lg

The residue number system (RNS) is based
upon N fixed relatively prime integers B, By, ..., By which are called
moduli (or base). An integer number X, that lies in the range O to
(M-1) (M is the product of the N moduli) is uniquely represented with
respect to the N moduli via the Ntuple of residues (le, an, ceey RmN)'
Each residue nmi is defined to be the least positive integer remainder

by the division of X by m. . For example, for the 5 moduli 7, 9, 11, 13,
16 the maximum range M is equal to

M=7x9x11x13x 16 = 144,144 (8.1)

Thus, this set of moduli allows us to represent any integer in the range
0-144,143. For example, 279 is represented by (6,0,4,6,7). Note that
it is convenient to have an even modulo so that we can detect negative
numbers easily. In this case, the range 0-(M/2 - 1) is used to
represent positive numbers, whereas the range M-1 to M/2 is used to
represent negative numbers. Note that in the latter case M must be

subtracted in order to obtain the correct answer.

To perform residue arithmetic operations,l9 we first convert all the
numbers of interest into RNS. We then perform the arithmetic operation
by operating on their RNS representations. The specifics of the RNS
operation depends on the specific arithmetic operation we are

performing. In all cases, however, operations over different moduli are

independent, there are no carries and the result of the operation on
modulo m, cannot exceed mi-l.
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: To add in RNS we simply add the corresponding residues and then we find
N the residues with respect to each modulo. For example, in base
o (7,9,11,13,16) the sum 279 + 31 = 310 (31 in RNS is (3,4,9,5,15)) is
.
"
-:' (6,0,4:617)
.
o~ (3,4,9,5,15)
& (2,4,2,11,6) = 310.
R
R
2
;m To subtract in RNS we change each residue digit of the subtrahend by its
:? complement and then perform an addition. In RNS the complement of a
: residue is its difference from the modulo; e.g., in base 13 the
:? complement of residue 9 is 4. For example in base (7,9,11,13,16) the
) difference 278-31 = 248 in BNS is
o4
R
- (6,014:6’7)
&' +
f{ (4,5,2,8,1)
i
.f.
!l
{F
N

! (3,5,6,1,8) = 248

" To multiply in RNS we multiply the residues at each modulo and then find
o the resulting residue. For example, 279 x 31 = 8,649 is




F

L)
b

vl'u.

(6,0’4’617)

> . x
5 ' (3,4,9,5,15)

"

s

jh (6,0,3,4,9) = 8,649

£

Division in RNS is not always possible. RNS by definition represents

: integers. The division of two integers is not always an integer and
.E thus it cannot be represented in RNS. However, in some special cases,
L division can be performed by means of multiplicative inverses. An

" integer Y is called the multiplicative inverse of X if the product YX
;U with respect to modulo m is 1. For example, in modulo 11 the

,$ multiplicative inverse of 5 is 9. To use multiplicative inverses for
f % division, the result of the division must be an integer and the divisor
| must not contain any moduli as factors.
‘:i 8.3 Residue Look-Up Table Processing
0

‘-,l: -
) Because of the lack of carries, residue arithmetic allows independent
:{; calculations per modulo without the need for different modulo processors
;ﬁ: to cross-communicate. A general RNS processing scenario is shown in
:f: Figure 8.1. In such a general scenario, binary data are fed into a
A binary-to-residue converter (B/R). The converter feeds its outputs (N
‘l; outputs for N-moduli operation) to N different processors. All

jf processors perform exactly the same RNS function(s) but with resnect to

i a different modulo m, . Upon completion of the operation, the outputs
o from the N processors are fed into a residue-to-binary converter (R/B),
'fj whose output is the result expressed in a conventional binary form.
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Because of this inherent lack of carry propagation, high speed
processing can be achieved. In addition, all processors are similar and
no global interconnections are needed (a very important conmsideration in
a VLSI configuration). Since the system dynamic range is the moduli
product, high dynamic range is achievable by using more parallel
channels. Thus, high dynamic range can be achieved without reduction of

the processing speed.

Let us now concentrate on the RNS processing itself (B/R and R/B
conversion is discussed in detail in Section 8.5 and 8.6) under the
assumption that residue representatioﬁs are available. Because of the
lack of carries, the bounded output range, etc., in RNS, various
arithmetic operations may be implemented via the use of the look-up
table (LUT). The idea is illustrated in Figure 8.2 where the LUTs for
multiplication and addition in modulo § are shown. For the
multiplication LUT, the objective is to create the product of numbers X
and Y without performing an actual multiplication. For modulo m,, the
LUT has two sets of inputs (one for X and one for Y), each of which
consists of m inputs (X or Y can take only m, different values). For
different values of the inputs, we obtain a different value at the
output. These outputs are pre-calculated and stored and upon

interrogation of the LUT with the inputs are read out.

Various forms of LUT implementation have been proposed and analyzed in
the literature in the last decade. Among the architectures suggested
are those of Huang et al,2o Tai et 3121 and Polky et a.l,22 which are
more or less designed around electro-optic control of beams propagating
in integrated optical waveguide structures. Another approach is the one
by Gaylord et 31,23 which is based on binary coded residue LUTs. Such a
processor exploits the multiple parallel channel processing capability
that is inherent in optical systems. It performs EXCLUSIVE OR and NAND
logic operations through the use of optical LUTs, which are based on

holographic recordings or the use of spatial light modulators.
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Our approach for implementing residue LUTs is based on the utilization
of small, high-speed light emitting diodes (LEDs) or laser diodes (LDs)
in conjunction with fiber-optic combiners or holograms. Numerical
operations are performed simply by generating a light pulse which
reaches a detector that has been encoded for the number resulting from
each operation. Thus, for the modulo 5 multiplication (Figure 8.2)
light produced at the intersection of inputs 3 and 2 drives the detector
labelled 1. Similarly, for the modulo 5 addition, the light generated

at the intersection of 3 and 2 illuminates a detector encoded O.

One way for implementing this concept is through an interlaced
two-dimensional grid of electrodes in conjunction with high-speed LEDs
or LDs at the intersection points (Figure 8.3). A voltage pulse applied
to each input line, such that the pulse amplitude is less than the LED
junction voltage but that twice the pulse amplitude exceeds it by a
considerable margin, causes the diode at the intersection point to emit
strongly. The emitted light is transmitted to a detector that is
encoded for the number to be produced at that table location, as
indicated by the number in each grid box. To minimize the number of
detectors required and to promote flexibility in LUT geometry, we use
fibers (or a hologram) to transmit light from each diode that
corresponds to a given digit to the single detector encoded for that

digit.

Other arithmetical operations use the same LUTs in combination with
one-sided subprocessors (or wiring maps) which precondition some of the
inputs to these LUTs. Thus, subtraction proceeds through formation of
the additive inverse of the subtrahend followed by look-up of the
difference in the addition table, while division proceeds via the
multiplication table after first forming the multiplicative inverse of
the divisor. The wiring maps which form these inverses in modulo 5 are

shown in Figure 8.4. Additional operations such as raising to an

T TGP VAT LR W T A T T e e




s . .
m ' .
o
0 .
m -lp.“ o mbu .-«
« @ ol d “
N < = - -
w Lo P o L
0% z Q.9
Oa o O 0 o
a = P .
« - o ‘.
mA A p -d ‘.
W ow - n o
= ug no » Lt
w - —~ 0 @ 7,
(=72 53 38
o 50 Aan
33 33 ~.o 8
Ty o
w O K ‘\.
wg —~H O St
z9 E N
Z < -2 5
QJ e .
= e
ﬂ ‘k-“ ...
q ". ﬁ - J J fm e ‘-pv‘.
S W S W W N e
I Yol Ye! Yol Yol - mut o A
TcrlLl..l.—,l+lbl%llTL||— Sel $
| L ] | | I L OO o ‘
. Y. R, WL N p. | AR
T ¥ ' ¢ m Y 1T Y v I - A
— 0- ” 1. 4_ o~ © 0 ”. .....
q.ll.l'wll II“I.I rldllll—ll - - mw A ......
~ . Y. NN, G, U Y, W g =
— T v ” < Y ]
(- o~ ! | | et O .
| ! - “ 3.5 -
—-l'l—lillﬁlLll*llll.*' .-ll“ m 0 @
. . G, SN, U L/ L tmh . S
\& o4 \ SN 2N 4 ) >l | n m‘u "
] ol - ~y ol 4_ eﬁ o Y 2
F-1 llrl*rlrlvl.d.l.. lLllfll_ .mn as ..V.
t [} 0 ] RN
o [ Y. G \ p. N . N | A
B J\ Y J\ ' ¥ -
o ol ol o ol ™ &9
--"'P'lvllrlll—.llnr|nh|l -t . .-nl
. o0 o+ g
)
e g
) ’
(-] - o~ ” - N R
ord ....v_.,
(<3 p
n.n‘
q.r
W-
23
ke
_ . e e R YRR an TR ¢ et Ty 5
! !-*;ﬂ' ’-I.-‘-‘-.JQ P& PP R g .l- u / ..-uh--l ...n J--njnqﬁv\ﬂ - ,_1- .”J.v TS ! ... .v., .,.\... .\,\.,. ; r...vnuﬁl- T % M R, " PP it e <N -



Wi Nsvuwywgws r--w-—-tvivtrl"'*"lw-v(.‘rﬂ-v'l‘*l'niﬂ’l"', ) pad 820 ¢ B 4.8 sl ok fad tal dal oad T W N WY W W W WO WYY WY @ W W W e
Y

0 1 2 3 4 0 1 2 3 4
| l | | | l | l l
0 4 3 2 1 1 3 2 4
A) ADDITIVE INVERSE, a B) MULTIPLICATIVE INVERSE, a-!

Figure 8.4 Look-up Tables (Wiring Maps) for Additive and
Multiplicative Inverses in Modulo 5 Arithmetic

|
|
l

8-10




Y,
{. integral power or an inverse integral power are also performed using
5 wiring maps which do not require generation and detection of light
pulses. This shows the increased flexibility of the RNS LUTs as
; compared with DMAC and BPAM. The inputs and outputs of the LUT remain
. in the same residue base and thus different LUTs can be easily
W interconnected without the need for conversion. Such capabilities
‘i allow fast data flow and ease of pipelining as we show in Section 9.
We now estimate the expected performance of the LUTs. MS figures of
:E the order of 1 GHz are to be expe;Zed since laser diodes have already
vy achieved sub-nsec switching times™ and operation of LEDs at
i frequencies > 1 GHz has also been reported.25 To estimate the power
g consumption we must consider a specific computation example such as the
,£ multiplication of two 8-bit numbers. The possible product range
i (6.5 x 104) can be covered with the moduli 3, 5, 7, 8, 11 and 13.
;; Assuming 1 GHz operation, a signal/noise ratio of ~ 30 (corresponding
. to a negligible bit error probability) and the use of detectors with
N NEP of ~ 10_13W/JHE, we find that the optical power incident on the
Ex detector is about 0.1 uW. Furthermore, assuming ~ 10 dB fiber coupling
" losses and 1% diode conversion efficiency we find that the total
electrical power per operating diode is ~ 100 uW. If 10% of this power
3 is used for diode prebiasing then the total prebias power consumption
a is about 4.4 mW. Adding to this figure the power required to turn on
> the proper diodes (2 x 47 x 100 pW = 10 oW) we find that the total
: power consumption of the diodes is ~ 14.4 mW. Next, we calculate the
f’ power consumption necessary to drive a LUT from another LUT, which is
" usually accomplished via the use of buffers. This is an important
.; issue which needs to be investigated in detail but preliminary results
_ suggest that only one buffer unit per LUT (the one connected to the
’2 "on' detector) need be on at any time. Assuming this to be the case
i& and that the buffer unit is only 1% efficient, we find that the total
) buffer power consumption is 6 x 100 x 100 uW = 60 mW. Thus, the total
yﬁ 8-11
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. power consumption is 75 mW which when associated with a MS of 1 GHsz,

?j corresponds to a SE of ~ 1.3 x 1010 M-A/sec. W.

-

- This preliminary analysis suggests that the LUT structures considered

, here may offer MS and SE advantages of about an order of magnitude over
Sf those of DMAC, BPAM and GaAs processing units.

o

A 8.4 LUT Experimental Results

X

H To demonstrate as well as further understand the LUT concept we have

»h fabricated a modulo 7 LUT which can be configured either as an adder or
;ﬁ as a multiplier by changing the fiber-optic connections (Figure 8.5).

- The laser diodes used, Mitsubishi ML 4402, are capable of providing
;% 5 mW pulses of light output at 780 nm. Their threshold current is

™ between 35 mA and 40 mA and the operating current is about 50 mA. The
' LUT format is a square matrix of 7x7 LDs arranged in 7 rows and 7
columns as shown in Figure 8.8. A double-sided FR4 board is used which

L:S allows the implementation of a "non-additive" scheme in which rows are
X:: connected with common anodes and columns are connected with common

‘ cathodes. In an alternative scheme the cathodes (anodes) are grounded
f; and the anodes (cathodes) are connected to both row and column lines.
™ Note that in this "additive" scheme we need to decouple row and column
o lines (via the use of diodes) in order to avoid spread of the drive

“: current pulse. For this reason and because of the more complex
::: interconnection patterns of this scheme, we have decided to use the
;:: "non-additive® scheme.

7
:; To ensure high-speed operation we have decided to use ECL compatible )
= drivers. Current to each anode row is supplied through the 35 Ohm
':i resistors 31-37 which are connected to + 5 V. This row current is
iﬁ diverted from the laser diodes by transistors QI-Q7. When the row

= inputs to these transistors are at ECL logic "1* (v + 1.2 V) the

:8 8-13
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Figure 8.5 Photograph of prototype modulo 7 LUT
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transistor diverts about 55 mA from each row. Each cathode column is
connected to ground through a tranmsistor, qs-q14, which can sink about
70 mA when an ECL logic "1' is present at the input, and through a
parallel 510 Ohm resistor which provides the path for initial bias
current to the diodes. When all lasers are "off", i.e., rows at logic
"1* and columns at logic "O", current through row resistors 31—37 is
about 67 mA. The remaining row current (v 12 mA) not diverted by QI—Q7
flows through that row of lasers via the column resistors. This
initial current rises to ~ 25 mA when a row transistor is turned off.
It should be noted that the sum of all row currents not diverted by
input transistors QI-Q7 and not flowing in the column resistors must be

sunk by column transistors, QS—Q14, when that column is addressed.

The output from the laser diodes is coupled into RFC fiber-optic 7:1
combiners (see Figure 8.5) described previously in Section 7.3. The
combiner output drives a high speed (rise/fall times { 1 ns) pin diode
(Motorola MOFD 1100) which in turn drives a high speed comparator
(AM6687) . The comparator’s dual outputs (positive and negative) are
capable of driving any of the QI-Q14 transistors. In this scenario, we
simulate a LUT that is capable of driving another LUT.

An important factor for high speed operation is the operating mode of

the driver transistors QI-Q14 which need to provide both high switching
speed and adequate current levels. Initially, Motorola 2N5843
transistors were used in a switching mode which offers the advantage of
large current flow. In this operating mode, a drive pulse applied to
the base quickly saturates the transistor and thus adequate current
flow is achieved. The problem associated with this approach is the
slow turn-off times due to the relatively long storage times. Use of
Schottky diodes between base and collector reduces the turn-off times
but not enmough to allow GHs-type operation. With this technique we are
able to demonstrate about 110 MHz rates. An alternative approach is to

use the transistors in a current mode which virtually eliminates
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- the problem of slow turn-off times. Note, however, that this technique
:¥ allows relatively small amounts of current flow and is, thus, suited to
e relatively low-current situations. Nevertheless, we have implemented
,;3 this technique using Motorola MRF 581 transistors which have an Ft of
4 GHz at 100 mA collector current levels. These transistors allow
i? operating current levels of 45-50 mA and about 2 mA of pre-bias current
éi which is shared among 7 laser diodes.
2
Our first experiment deals with the effect of the board’s micro-strip
fij lines on switching speed. For this purpose only two laser diodes are
i;f connected at positions (1,1) and (7,7). These positions are subject to
_Jﬁ the smallest and longest propagation delays, respectively. The top
i trace of Figure 8.7 shows the 250 MHz RZ ECL waveform used to drive the
‘ﬁt laser diodes. This is derived from a Hewlett-Packard (Type 8082A)
ﬁz pulse generator. The second trace of Figure 8.7 shows the (7,7) laser
;}? diode response to that waveform (detected through an MFOD 1100 pin
. diode) when the laser cathode is pulsed and the anode is DC biased.
i;; Similarly, the third trace shows the response when the anode is pulsed
por and the cathode is biased. Finally, the fourth trace shows the
ktﬁ response when both anode and cathode are pulsed simultaneously. As
) these data show, the laser diode responds to at least 250 MHz RZ or
::ﬁ 500 MHz NRZ data rates. (These frequency limits are dictated by the
::i available pulse generator). Note the reduction in pulse width, by
2;; about a factor of 2, when the anode is partially or fully driven. This
behavior is not well understood and is believed to be associated with
1?{ the specific laser diodes used. In any event, this effect is not
,*53 believed to seriously affect the LUT’s performance. Note that the
E;i (1,1) laser diode shows behavior similar to the (7,7) laser diode with
- the exception of the lack of a small delay ({ 1 ns). These results
i: show that both the impedance and inductance of the board’s micro-strip
;E‘ lines allow for at least moderately high switching speeds.
e
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v Figure 8.7 Mitsubishi ML4402 laser diode switching characteristics
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-
. For the next experiment, the board is completely populated with the 49
:: laser diodes and different rows and columns excited. Figures 8.8b,
; 8.8c and 8.8d show the output intensity spots in the absence of the
. fiber-optic connections (LUT geometry is shown in Figure 8.8a) when the
’ (1,1), (4,5) and (7,7) rows and columns are excited. These figures
:? clearly demonstrate the concept of the interlaced electrode LUT and
E show that only the cross-point laser diodes are in a lasing mode (i.e.,
- strong intensity) whereas the remaining laser diodes are more-or-less
e in a LED, sub-threshold, mode (i.e., low intensity). Figures 8.9a and
\E 8.9b show the responses of the 7 laser diodes of the first row and the
:E: 7 laser diodes of the first column respectively, when driven with a
. 250 MHz RZ waveform. As these data show, all lasers have a clean
N response to at least 250 MHz RZ. Note that there is about 20%
N variation in the output light level because of the variation in
ES threshold level and current-power characteristics of the different
Wy laser diodes. In Figures 8.10a and 8.10b we show the responses of the
. 7 laser diodes of the sixth row and the 7 laser diodes of the sixth
i; column. Once again we can see that all diodes respond to the drive
7 waveform of 250 MHz RZ. Note, however, that the response is not as
L clean as that of Figure 8.9. Specifically, there is ringing and
- undershoot that increases with distance along the strip line. This
‘;g problem is not well understood but is believed to be at least partially
jf due to drive pulse reflections caused by imperfect termination of the
ﬂf strip line. This is a difficult problem to model and solve because of
= the dynamic impedances of the laser diodes involved and is compounded
- by the fact that we are dealing with laser diodes of different
- characteristics. It is important that this issue be further studied in
o detail to provide a solution which will eliminate the possibility of ‘
v false responses by ringing.
fzz Finally, we have measured the "noise" due to the response of the laser
b diodes which are connected to the rows and columns being exercised, but
s; which are not located at the cross-points. This is an important
:5; 8-18
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Figure 8.9 Responses of the 7 laser diodes of the first row (a) and of
the 7 laser diodes of the first column (b).
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Figure 8.10 Responses of the 7 laser diodes of the sixth row (a) and of
the laser diodes of the sixth column (b).
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measurement because it provides information concerning the detector
threshold level necessary in order to avoid false responses.

Figure 8.11 shows the responses of the 7 laser diodes of column 4 when
the (4,3) laser diode is being exercised. As Figure 8.11 suggests the
response is rather small, about 20 db below the response of the (4,3)
laser diode, which translates to rather non-critical thresholds.
Similar results are obtained when different rows and columns are

excited and, thus, this is not a serious problem.

In conclusion, we have shown that a LUT constructed with discrete
components can operate to at least 250 MHz RZ or 500 MHz NRZ data
rates. We expect substantially higher rates from a hybrid or
monolithic package. However, we should emphasize that a complete
analysis of the driving circuit is necessary to enable properly
terminated lines to be designed that will eliminate the

ringing/undershoot problems.

8.5 Binary-to-Residue Conversion (B/R)

A simple way to understand B/R conversion is through a simple numerical

example. Consider the binary representation of the number 255:
_ 7 ] 0 .
255 =1 (2°) + 1 (2% + ... + 1 (2") = 11111111 (binary)

Because of the presentation of algebraic rules in RNS (i.e.,

{r+8) = (r> + <s)> and <{rsd> = <{r><{s>, where <{r)> is the residue

representation of number r), the residue representation of 255 is equal
to the residue representation of the sum of the products of the binary

bits and the powers of 2 they correspond to. For example, the residue
of 255 modulo 7 is

- - - Py T A A P T RN
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and the total prebias power

@2 +1+4+2+1+4+ 2+ 1>7
A7>, =3 (8.2)

From Equation (8.2) we see that for an efficient B/R conversion, we
need to: (1) multiply each input bit by the residue representation of
its corresponding power of 2 and (2) sum all the residues.

Fortunately, all these operations can be achieved in a pipelined
architecture using the LUT technology of the previous section. An
example of such an implementation is shown in Figure 8.12 for an 8-bit
A/D converter and modulo 7. Each output bit of the A/D converter is
connected to a binary switch. Pairs of binary switches are connected
to 2x2 LUTs. Pairs of 2x2 LUTs are connected to 4x4 LUTs which in turn
are connected to 7x7 LUTs. Each 2x2 LUT provides the residue of the
sum of two bits. depending on whether each bit is "1" or "0", the
binary switch activates one of the two possible electrodes (each bit
can be O or Y in residue, Y being dependent on the power of 2 each bit
corresponds to and the modulo we use). Once two inputs are present in
the 2x2 LUT, one output (out of four possible outputs) is produced.
For example, for the case of bits 27 and 26, if we have 1:27 and 1:2
the LUT output is 3. Two such outputs now drive 4x4 LUTs whose outputs
drive the 7x7 LUT. Note that this is a pipelined process and thus at

6

each clock cycle a new residue is produced.

For most practical residue processors, moduli that exceed 11 are

required. In these cases 2x2 and 4x4 LUTs are always used. The
dimensions kxk of the third LUT depend on the modulo k we use. For
example, for modulo 13 we need a 13x13 LUT. The number of 2x2, 4x4 and
kxk LUTs we need depends on the number of input binary bits. Table 8.1
shows the number of 2x2, 4x4 and 7x7 LUTs we need for 8, 16 and 32

input bits when modulo 7 is used.
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Table 8.1

N (bits) 2x2 4x4 77
8 4 2 1
18 8 4
32 16 8 7

From the above we can conclude that B/R conversion can be achieved in a
very simple way by means of LUT technology. The process can be of high

speed because a pipelined architecture can be used.

8.6 Residue-to-Binary Conversion (R/B)

Residue-to-binary conversion can be achieved by converting into the

mixed radix systemlg which allows for the use of LUTs.

The principles of operation are pictured in Figure 8.13 for a system of
four moduli, m through Dy with residues r, through Ty The four
residues are clocked in simultaneously with ry, T3 and T, going to LUT
accumulators and r, being fed through an additive inverter (for
complement calculation) to each LUT accumulator; T, also passes through

the system as output 3.

The subtractions are performed to the respective moduli and the results
are passed to the LUTs. There they are modulo multiplied by r, and
passed on to the next stage. The second stage performs similarly to
the first except that now a, is subtracted from the others and is
passed to the output. The process continues through a cascade until

the final output is triggered, in this case by the arrival of a The

4
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result of the decoding process must then be calculated according to the

:; expression

k'

= I= a; + 3,°m; + agcmm, + 8,°W 'Mytmg + ... (8.3)

W

ﬁ; where I denotes that the result is an integer and the sequence

'2 continues for as many terms as there are residues.

:5 An example of this procedure is shown in Figure 8.14. In this example

” we use 4 moduli 2,5,7 and 9. The input residue representation is

53 (1,3,4,0) which corresponds to 333. Rectangular blocks show the LUTs

{‘ and small squares the output detectors. The values within the detector

g; blocks correspond to the results of the wiring maps, for the additive

:E; inverters (—ri)mj, when applied to the original input values (shown

-:; next to the arrows). One can understand the operation by tracing the
heavily outlined squares in each block. In the bottom of Figure 8.14

jﬁ we show the conversion result which is 333.

‘_:I

S

Tai et 31.21 have suggested a pipelined version of the R/B convecter.
In their approach the coefficients 3;, 35, 34, etc., are delayed so
that they all appear at the same time. Figure 8.15 shows the pipelined
version of the R/B converter of Figure 8.14. Note that delays are
implemented using technology similar to that used in LUTs; i.e., sets

of laser diodes, fibers and detectors. Through this pipelining

'y v - oy 1
A A NS,

3

‘:f structure; we can have multiple sets of residues following each other

i] through the R/B converter with a time-gap of only one cycle and thus

- high speed conversions are possible. Note that the total number of
= LUTs is 2N-2 where N is the number of moduli we use.

o

_-4’

o Let us consider now a practical implementation of Equation 8.3,

;i assuming that a pipelined R/B decoder is available. The first

' operation we need to do is to multiply each coefficient a; by the ‘
A
o |
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Figure 8.14 R/B conversion example
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Figure 8.15 R/B pipelined conversion example
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Figure 8.18 Pipelined LUT implementation of Eq. 8.3
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’. proper ni,nj....mw product (mimj...m' products are known a priori).This
- operation can be accomplished via high speed digital ROM LUTs (see
% Figure 8.16), which are activated depending on which value of the a,
W coefficients is "on." Next, we fan-in all outputs of each a; ROM LUT
) and add them in pairs via a high-speed digital adder. Subsequently, we
l'i sum the results from the adders to obtain the final output I. In
;i Figure 8.16 we present an example of this operation for the R/B
I converter of Figure 8.15. It is important to note that the approach of
" Figure 8.18 is fully pipelined which means high speed conversion
i capability. Note that the total number of ROM LUTs we need is equal to
:-i the sum of the N moduli we use, whereas the total number of high-speed
U adders is equal to N-1.
‘.
:e From the above we see that R/B conversion can be achieved in a very
7 simple pipelined way with efficient utilization of LUT technology.
<
A 8.7 Hardware Minimization
;E; One of the issues associated with position-coded LUTs is their
“} complexity in terms of numbers of gates (optical sources in our cases).
2 This is because the number of gates Ns grows as the square of the
;;; modulo m. To understand this, consider a particular residue example,
:: specifically, a residue equivalent of an 8-bit multiplication, which
W requires moduli 3,5,7,11 and 13. In this case, we need a total of 437
?; gates or laser diodes. For computationally linear signal processing
vga problems this is more-or-less acceptable but for computationally
,j} non-linear applications it becomes a serious limitation. For example,
v consider the dynamic range needed in order to solve a system of linear
A equations of dimension 12. Assuming that the maximum value of the
:&T determinant is 128, we find (see Section 9.2, Equation 9.5) that the
;js dynamic range needed is of the order of 5 x 1031 (about 105 binary
v
o

bits)! To accomplish this, we need the moduli 9,11,13,17,19,23,25,
. 29,31,37,41,43,47,49,53,59,61,84,67,71,73. 1In this case just one

residue multiplier requires a total of 42,452 laser diodes.
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Obviously, for this kind of problem the complexity grows rapidly. In
an effort to minimize this problem, we have sought solutions at both
tne LUT and processor levels. In the first part of this section, we
discuss our attempt to minimize the number of laser diodes per LUT and
in the second part we discuss a general residue scaling approach
suggested by J. N. Polky et al.22

One can accept that the LUT gates can be reduced once it is realized
that there exist symmetry planes in both multiplier and adder LUTs.
Consider, for example, the LUTs of Figure 8.3. In the multiplier LUT
one can see that the symmetry line passes from (0,0) to (8,6)
coordinates. Similarly, the adder LUT is symmetric about the line from
(0,8) and (8,0). Thus, if we route some of the inputs properly, about
one-half of the diodes will be needed. One such example of a reduced
LUT is shown in Figure 8.17 for the case of a modulo 7 multiplier LUT.
It can be seen that we need 28 diodes versus 49 for the general
implementation. This is achieved via proper interconnection of similar
output channels. In the process, however, we are forced to use

multiple-drivers per grid, whereas for the non-reduced case we need

only single drivers. In addition, we have increased the average number
of interconnections (per diode) by a factor of 2. Thus, we see that
the reduction of gates is accompanied by an increased complexity in the
interconnect pattern. In fact, one can easily show that as the number
of diodes decreases, the number of interconnections per diode
increases. This relationship is shown in Figure 8.18 where we plot the
number of laser diode rows (NR) versus the number of interconnections
per diode (nI) for modulo m_. From this plot we can see that, in
principle, a LUT made out of 1 row of gates (total of m, diodes) is
possible; however, each diode needs at least 2 m interconnections.
Thus, we need to optimize the relative numbers of diodes and
interconnections; one method of accomplishing this is to assign cost
functions to both diodes and interconnections. For our experimental

LUT boards a simple analysis shows that the multiple drivers and the
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more complicated interconnection pattern result in a more expensive and

more complicated LUT and, thus, the unreduced LUTs are preferable.

R

g

- Note, however, that this analysis is performed for a discrete component
LUT where the physical length of the electrode microstrip lines is of
the order of 10 cm. In a realistic scenario where LUTs are made out of
integrated LED or LD arrays and the microstrip lengths are comsiderably
smaller (~ 1 cm), a similar analysis may yield different results. In
any event our present feeling is that a reduction by a factor of 2 is
about the limit of this approach. The result of such a reduction is
obviously not very significant and, thus, we need to develop LUT

architectures in which Ng grows at a slower rate than m2.

Hardware reduction can also be accomplished at the processor level by
using techniques which include efficient algorithm selection (to keep
the low dynamic range) and scaling=19 The choice of algorithm is
application dependent. For the APAR case the only present alternatives
are Gram-Schmidt type algorithms and possibly Gauss elimination
techniques since these do nov require divisions or square roots (which
are problematic for RNS). Scaling is possibly a more profitable
approach since it can be applied to a number of applications. The
scaling technique we have studied is that suggested by J. N. Polky

et 3122 which offers the advantages of: (1) scaling for both positive
and negative numbers and (2) pipelining. In this scaling technique22
we first prescale by adding M/2, next scale by performing about N+l
additions per module, and then post scale by subtracting various
biases. The technique requires that an extra module is used. For the
prescaling, one wiring map per module is required and its output is
fanned out to N+1 channels. For the scaling operation, each module
requires N maps whose results need to be added and, thus, N-1 adder
LUTs (per module) are needed together with one more adder LUT for a
combined 3caling/post-scaling calculation. Thus, the total number of
LUTs needed is N2 + N. It is of interest to examine the accuracy and

range of this scaling procedure so that the "savings" (from the
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: scaling) and "expenses" (due to N . N LUTs) can be compared. To
‘:i achieve this we use a computer program which calculates (in residue)
:: the scaling results for a variety of scale factors S and residue
o dynamic ranges M. In Tables 8.2, 8.3 and 8.4, we show the worst-case
f\, scaling accuracy (SA) and the expected accuracy (EA, obtained by
'é performing a straightforward division of the number to be scaled by S)
{; for different residue ranges M (M = 27, 24 and 20 binary bits
o respectively) and scaling factors 8. For each case, 512-65,000 numbers
. are scaled (S8 = 0.5% - 0.0001% of M) and the lowest SA is reported.
;;' From the above tables we see that SA varies as a function of both M and

o S, with the latter being the most critical. This implies that for a
>

N given scaling accuracy, the scaling factor cannot exceed a given
percentage of M. For example, for M = 24 (Table 8.3) if a SA of 9 bits
-

is required, then S cannot exceed 0.05% of M.

Prom Tables 8.2-8.4 we see that if a SA of 9-10 bits is desired, the
maximum scaling factor £ cannot exceed 0.005% M. This implies that, in
principle, with M values of about 20,000 we can handle much larger

k. dynamic range problems. This issue needs to be studied further in
conjunction with a specific algorithm. Only in such a context can we

evaluate whether the benefits of scaling are significant.

A

= Unfortunately, the Gram-Schmidt algorithm of Section 9 canmnot

‘E: incorporate this scaling technique.

;j 8.8 System Chara:teristics for a Square Systolic Residue System

.2 In this section we discuss an example of a residue LUT processor,

r4 . namely, a systolic processor15 for matrix-matrix multiplication. This

o particular example is chosen because a large number of APAR algorithms
N

= can be expressed in terms of matrix-matrix multiplication. Figure 8.19
- shows a typical configuration for a square systolic array. The array

consists of nxn MAU LUTs, each of which consists of cascaded multiplier
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Table 8.2

EA (Bits) SA (Bits)

o 200,000
s 100,000
50,000
25,000
12,500
o 8,250

- =
o

10

.01 12
.005 13
.001 14 12

O O O © © © O O] »n
o
&
—
-
© © © 3 =

, 3,125 .0005 15 12
o 1,562 .0001 16 13
._<""\

0

-"_;

. m .

E 3

SN Table 8.3

SR

b=

108

‘ S % M EA (Bits) SA (Bits)
= 41,500 0.5 9 7
L 20,750 0 10 8
N 10,370 0.05 11 9
e 5,180 0.01 12 9
o 2,800 0.005 13 10
T 1,300 0.001 14 10
NN 850 0.0005 15 11

R 320 0.0001 16 13

R A "‘" ............. O
SRR Sl -C _._‘*\ ,‘4\
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Table 8.4

S % N EA (Bits) SA (Bits)
1800 0.5 9 7
900 0.1 10 8
450 0.05 11 g
230 0.01 12 9
110 0.005 13 11

80 0.001 14 12

30 0.0005 15 13

10 0.0001 168 13
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and adder LUTs. To insure proper data propagation, local interconnects
between adjacent MAU LUTs involve a fixed delay which is equal to the
delay of a LUT. For the purposes of this example, we assume a 18x16
real matrix multiplication scenario in which the elements of the input
matrices cannot exceed 8 bits. Fach MAU is required to add 16 products
each consisting of 168 bits. Thus, the dynamic range requirement is
20 bits or 1,048,576. To handle this we use the moduli 7,8,9,11,13 and
17 which yield an M of 1,225,224. Note that in this example the
dynamic range of the multiplier can be handled by moduli 7,8,9,11 and
13; however, we forced to use the extra modulo 17 because of the
dynamic range requirement of the adder. For the systolic processor we
need 2 x 18 x 16 = 512 LUTs per modulo layer giving a total number of
512 x 8 = 3,072 LUTs. The total number of LDs in these LUTs is about
396,000. Additional LUTs are required for B/R and R/B conversion. We
need a total of 6 x 16 x 2 = 192 B/R converters each consisting of
7 LUTs. The average number of LDs per B/R is about 170 and, thus, the
total number of LDs in the B/R converters is about 32,000 (i.e., about
8% of the number if the processor). The number of R/B converters is
determined by the read-out arrangement. Let us assume the use of 16
R/Bs in order to read out the results in a pipelined fashion. Each R/B
needs 15 LUTs which contain about 2,700 LDs and thus the total number
» of LDs for the R/Bs is about 43,000 (i.e., about 11% of the number in
: the processor). Thus, we see that the total number of LDs is about
470,000. By comparison, a fully digital 18 x 16 array processor
requires a total of 256 MAUs. Each MAU requires about 76 Full Adders
L each of which requires about 10 gates. Thus, the total number of gates
; is 190,000 which is about 40% of the complexity (in terms of gates) of
D the residue system. Thus, we conclude that, for this particular square
systolic processor, the residue LUT implementation has twice the
complexity of an electronic digital implementation. However, this

situation can change if the complexity of the LUT is reduced. We also

- e an
R BN

note that the specific application which we have analyzed does not

favor the residue system. This is because the multiplier LUTs have an
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- increased complex®.y dictated by the dynamic range of adder LUTs which

i requires the additional modulo 17 LUTs. Without these LUTs the number
- of gates in the processor is reduced to about 270,000, comparable to
. that of a fully electronic processor. This emphasizes the necessity of )

choosing applications which are well suited to residue implementation.

-
T
P
A

Y
o The MS of the system is equal to that of the LUTs which we expect to be
D in the range 1-6 GHz. To calculate the SE of the processor we perform
. an analysis similar to the one in Section 8.2. Thus, assuming 1 GHz
;: operation and LUTs implemented with laser diodes, a SE of the order of
jE 2-3 x 109 M-A/sec. W can be expected. These values of MS and SE for
o" the residue processor are superior by at least an order of magnitude to
i; those of a GaAs implemented electronic processor.

;% The performance of the residue processor may be improved considerably
,}: if different Electro-Optic technology, for example SEED (Self-Electro-
x; Optic-Effect) devices,26 is developed for LUT implementation. These

:g devices exhibit strong changes in optical absorption (transmission)

:; dependent on the intensity of the incident light. These changes are
!? due to changes in internal electric field distribution that occur in
! response to a variation in carrier concentration induced byzgptical
o absorption. The response time of this process is estimated“ to be as
.23 short as 2 x 10-13 sec. If this technology can be implemented in LUTs
b then improvements in MS and SE by 2 orders of magnitude can be

\ expected. In th{s case, the performance of the residue processor would
ZIE be far superior to that attainable from electronic processors,
:ﬁf including GaAs.

o
Y
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9. RESIDUE LUT IMPLEMENTATICON OF GRAM-SCHMIDT APPROACH

2 FOR_THE SOLUTION OF LINEAR SYSTENS

3

N

X 9.1 Introduction

7 In the previous chapter, we showed how residue LUT techniques can be
,j used to perform simple arithmetic operations. In this chapter we

. discuss the residue LUT implementation of a variant of the

s Gram—Schmidtl approach for the solution of systems of linear equatioms.
£ As such this technique is directly applicable to the APAR problem. In
B the next Section 9.2, we discuss the problem of solving systems of

2 linear equations using residue arithmetic. In Section 9.3 we present
3 the basics of the Gram-Schmidt variant along with a numerical example.
:ﬂ Section 9.4 contains the LUT design for the residue implementation of
ﬁ the technique. Finally, in Section 9.5, we discuss the characteristics
- of the LUT processor.

;E 9.2 Residue Resolutions of Linear Systems

\

N A significant advantage of RNS involves its considerably greater

o flexibility than DMAC or BPAM. Addition, subtraction, multiplication
'™ and some forms of division can be performed in easily-implemented LUTs,
‘; and this allows the efficient implementation of rather complicated

‘E signal processing algorithms, such as the Gran-Schmidt1

" orthogonaligation approach, in solution of large linear systems of

)ﬁ equations.
b
'1 These considerations strongly recommend the exploitation of RNS in the
W APAR application, which in certain formulations requires solutions of
) systems of the form

vy T Sy (9.1)




a0
Y where Cv is the covariance matrix, X, is the adaptive weight vector,
,j: and s, is the steering vector. Adoption of RNS to solve Eq. (9.1)
:2 precludes consideration of the QRI and certain other often-used
L algorithms which are inherently tied to real, as opposed to integer,
o calculations. This is not the case, however, with the modified version
- of the Gram-Schmidt orthogonalization, as we shall illustrate in detail
3
Qﬁ in later sections. Before we address these particular algorithms, it
O is appropriate to look more generally at the use of residue arithmetic
. in solving sets of linear equations.
E To begin with, we assume that the elements of C, and 5 are all
o™ integers; solutions in RNS can also be computed for the more general
b case where data are given as Gaussian integers, but we avoid this
¥ o formulation for simplicity. Because of the manner in which the
'y
:*f covariance matrix is derived from noisy signals, it is relatively safe
D> to assume that Cv is non-singular. With C:dJ representing the adjoint
By of C_, we know that
)
,\; = Cv ng (9.2)
.A
.z: is the integer solution of
N
.
-
: Cvz = (detcv) s, (9.3)
e Thus, we can write
N
o
T
;: which shows that division can be postponed until the last step of
‘3j computation. Newman27 has proved that Eq. (9.3) can be solved using
;:: residue arithmetic and we highlight some important steps of his proof
: here. Let Z be the ring of all integers and, for a given integer k > O,
.._
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let Zk represent all integer multiples of k. Basically, use is made of
the ring Zl of integers modulo M; it is the ring of residue classes of
the formr + Z M = : <oy Then ZM = {<0>M’ Dys -+ <M-1)l} and the
well-defined rules <r>uT<s>u = <rTs>u with T = + or x, make Zu a
commutative ring. These rules justify computations involving finite
sums and products; for example, if B is a square matrix, then

<detB>u = det(B)u. In solving linear systems of algebraic equations,
Newnan has shown that the priacipal modulus M must bound certain
parameters involving the determinant of Cv and the second member s,
Using Hadamard’'s inequality and Cramer’s rule we have derived the

following slightly improved inequality for a bound on M:
¥ > 20%% loax {k,b} (9.5)

where K = max, .|c
i, vij

examples are presented which show that this bound is comservatively

large, although improving it is difficult.

| and b = malesv.l. In the following section

9.3 Gram-Schmidt Variant

The Gram-Schmidt approach is applicable to the APAR problem because it
allows operations involving rectangular data matrices A, where
Cv = A*A. Here, we write

A‘A!v = (8.6)

)

w

which we solve for L This is done by post-multiplying A by a
sequence of n x n amatrices to produce a new sequence of m x n matrices
wher: each cucceeding matrix in the latter sequence has its number of

orthogonal columns increased by 1. With El representing the n x n
identity matrix,
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AE, = Q. (9.7{

It E2 orthogonaliges the second column of AEl to its first, then

AEE, = Q, (9.8)

has two orthogonal columns. This sequence continues until we have

E = El...En and Q = ql...qn, where E is upper triangular because all of
its constituents are used and § has orthogonal columns, and,
consequently, Q°Q (Q‘ is the Hermitian conjugate of () is a diagonal
matrix we call A. This procedure differs slightly from the usual
Gram-Schmidt method in that we use orthogonalisation without
normalizing the vectors in order to obviate the excessive growth of
integers in the computation as well as to postpone division until the
last step and remove the necessity to extract roots. The matrix Ek+1
differs, at most, from the identity by possessing integers in the upper

half of its (k+1)St column. In summary, we now have

AE = q (9.9)

and multiplying this equation on the left by its Hermitian conjugate
gives

E'AAE = Q'Q =14, (9.10)
A*A = g1 gl (9.11)
and
= e g 9.12
L 2, (8.12)
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To perform this computation in residue arithmetic we must also evaluate
the determinant of C' in each modulus. PFrom Eq. (9.11) we see that this
number is given by

detC_ = detd/|det|? (9.13)

where only the products of diagonal elements in E and, of course in A
need be computed. These computations are illustrated with an example.
Before proceeding with this example, we should note that the growth of
integers in this algorithm can be enormous but that it is not the
individual collection of integers appearing in the intermediate steps
of the computation that must be bounded by the principal modulus --
instead, we postulate that it is the bound on the coefficients in the
expansions of various terms that matters.

Consider now a 4x3 system corresponding to Eq. (9.1) and given by

1011 ' 110 x
1102 011 y = 1 (9.14)
0110 101 s -1
‘ 120
A A w = s
-v -

with X = [x,y,l]t. As we described above, the columns of A are

orthogonalised through application of the matrix

1 -1-1
E=|{0 1 0 (9.15)
0
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and

Using Eq. (9.13) we find that

and to 1nsure that an integer solution exists, we multiply 8, =
1,1 —1) by 15 and solve for w’

so that we get

detC
v

-1 _ -l
y -~ EAE
|
y =C,

-1
3
2 (9.186)
-1
(9.17)
15
=15 (9.18)
= (x’,y ,z’) The inverse of Cv is
11 -4 -3
1
= 15 -5 5 (9.19)
-3 0 9
15 9
15 = 0 (9.20)
-15 -12
0-8
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which by Bq. (9.4) yields w = (3/5, 0, -4/5)°. Note that C_! is
symmetric which is expected because Cv, the covariance matrix, is

symmetric.

Let us now course through the same examples using residue arithmetic.
From Eq. (9.5) we find that M should be ) 2808, which can be satisfied
with moduli of 5, 7, 8 and 11; in this particular example, using 2 or 3
as a modulus would cause <E> to be singular, a circumstance which cannot
be tolerated. We have noted previously that in some cases smaller M
values are sufficient for providing the correct answer, but this is not
always true and one thus has to select an M at least equal to the upper
bound. To demonstrate that smaller principal moduli can suffice we
choose to solve our 4 x 3 example using only the two moduli 7 and 11.

In modulo 7 we get
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and

5
-1
1
Thus, we find that
4 2 4
s, = B> a7l B, = 2 5 0
v 7 7 7 7
4 0 2
and
1 2
Wp=<CH 1] = o
J 2
For modulo 11 we obtain
072 4 9
= | 740 4| = |o
205 7 10

We can decode the results of Eqs. (9.268) and (9.27) to obtain

TIEFwTETETIETE TR TR -

(9.24)

(9.25)

(9.26)

(9.27)
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(<2>,<10>,,) 0> (9.28)

-12

\} where the last vector components involve the representation -38,-37,
o ...,-1,0,1,2,...,38 as the elements of Z77. Comparison of Eq. (9.28)
and (9.20) shows that the RNS approach indeed provides the correct

number.

* <, (; A‘_ p
NANRIIY)

Py

Caution must be employed because certain moduli can yield singular

i

equations or degenerate inner products as a result of the fact that, in

a quotient ring Z , <x x> =0 for a non-zero vector x. This computation
has the disadvantage over the straightforward Gram-Schmidt

orthonormalization and Q-R algorithms in that it generates integer

Y ﬁ;'-','-'.‘\". 4| @
. I' « L <

growth in the computation at an alarming rate.

-

o2

- 9.4 LUT Implementation of Gram-Schmidt Approach

A

\;£. The implementation of the modified Gram-Schmidt procedure described in
N this section is based solely on the use of residue LUTs and delays. Our
5';: objective is to invert matrix A in order to solve a linear system of the
L N

b form Ax = b, by expressing

o

o AE = § (9.29)
=

b where E is a triangular matrix and Q has orthogonal columns. Once E and
o Q are known, we proceed to calculate
-

o=
3
*

L 4

o * Q=4 (9.30)
.-
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e P=ql=alg (9.31)
N

> We are now ready to invert A by calculating

i

v c=a1l=-gq!l (9.32)
\.

The first part of the implementation deals with the calculation of the

:?j:‘_f: column vectors of Q, which we note by !j' and the coefficients a.ipj’yk,

| \ ...,1=1,2, j =1i+1, k = j+1, ..., which represent the columns (in

- order) of the matrices Ei' A simple analysis shows that each of the L

fre can be expressed as

L~ 4

ool

--..- —

N B T Byt Bolp t BNyt oo By Rip t Ay (8.33)
S where p, is the k*® element of the i*® column of the E; matrix and u. is
‘ -_) the i*® column of A. To calculate the X., we need to know the

\,. coefficients By i=1,2,3, ...., i-1, as well as all L. /YRR FIRE
"" This implies that the vector/coefficient calculation is serial and
._ . alternates, i.e., we first calculate X =4y, then we calculate e, a,
o followed by ¥y then plpzps, etc. The parametric form of the By

-:j:::' coefficients can be written as
o
'i“ pl = 1

1O
[P~

o Py = <mE> [ <mpuyd (9.34)

Bg = Py <¥g U;> [/ <Hmy>

Bioy = By <mug> /g gmg >
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<. where ¢ > designates the vector dot product and the superscript bar
1ﬁ§$ (vinculum) means complement. . (9.34) reveal that, with the

;iE exception of By and By the coeff1c1ents Py have a rather regular form
O which is a function of By (<'k-k>) 1 and <wm,u.>. We thus need a LUT
r\; set (LUTS) that is drxven by I and produces an output that is

;ﬂﬁ " proportional to (<' k>) (LUTSI), and a LUTS that is driven by P14,
}i? L% and (-k—k>) and gives two outputs, one that is proportional to Py
e and the other proportional to Py (LUTS2). Similar LUTS are needed

for the calculation of <w.w.> and By (LUTS3 and LUTS4). Figures 9.1

'12: and 9.2 show typical examples of LUTS1 and LUTS2. In these figures
f:ﬁ: each LUT has 2 inputs and 1 output. The top part of the LUT shows the
t;& operation performed (multiplication (*) or addition (+)) with respect
:__ to modulo m. The middle part of the LUT shows the implementation by
?i{ wire maps of functions such as dot product complement (< >) and inverse
,&:3 (1/< >); when the middle part is blank, no operation is performed

¢ there. The lower part symbolizes the output detectors. In the LUTS of
o Figures 9.1 and 9.2, one can also see blocks that denote delay(s)

": (denoted by D), which are necessary for data synchroniszation. To

\53 simplify, we designate the equivalent block diagrams of the various
LG LUTS structures and delays with the blocks of Figure 9.3, where the

< number on the top right corner shows the total delay (in clock cycles)
R fs that the LUTS needs in order to provide the lower output, a useful

ig quantity for calculations of delays needed for data synchronization.
}}: With the aid of Figure 9.4, we now describe a pipelined processor that
?ﬁi calculates LA and By for a 6x8 example. It can be seen that the

t?: processor uses LUTS1 through LUTS4 plus delays and adder LUTs. The
f?; inputs of the system are the elements of the matrix A. We assume that
= ) all the elements of A are fed into the system in parallel. This is not
,ii: a necessary condition and is adopted mostly for simplicity. The

;3 elements of A are fed through 6 row lines (i.e., a total of 36 lines)
b which are located at the top left of Figure 9.4. The top row of the
;vl system consists of one LUTS4 and 5 LUTS3. The former provides (11!1>
o
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which is needed for the calculation of the a, through €g coefficients.
Its output is fed in parallel to the 5 LUTS3 which calculate the above
coefficients and the products of the coefficients with the proper gi’s.
The latter are needed for the calculation of the various w. [see

Bq. (9.33)]. For our 6x8 example, it takes 7 cycles for the
calculation of w, (the 7th cycle being needed for the addition of a,u,
and ¥ =y = 21) and 5§ cycles for the calculation of ay-€g
coefficients. The 2% output is connected to a LUTS1 unit while the
other outputs (delayed by ome clock cycle) are fed into 4 LUTS2 which
after 7 cycles calculate w, and the coefficients 7,-¢,. Note that we
now need LUT adders in order to add the pags to p2!2, the T4l4 YO 71589,
and so on. This process continues for 4 more rows until all LA and all
the coefficients of the Ei matrices are calculated. It is important to
note that the processor of Figure 9.4 operates in a pipelined fashion
and thus constantly updates the vectors y. and the coefficients a-e.
This is very important for the APAR scenarios where one wants to
constantly update the adaptive weights. Finally, we note that the
processor provides output data (vectors and coefficients) every 7 clock

cycles (see Figure 9.4).

We now proceed to describe another pipelined processor (Figure 9.5)
which is used in order to calculate the elements of the E matrix which
in turn are necessary for calculating Eq. (9.32). For our 8x8 example
one can easily show that the elements of the triangonal E matrix are

given by

3N N,
SRS
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P The form of the elements shows that in calculating the e. . element we
-~
o need to know all the ®i5-1 elements as well as all the Bs_q
Q; coefficients. This implies that another serial-type operation is
F 4
' f necessary. This is exactly what the processor of Figure 9.5 performs;
- the ®:; element is calculated only after the previous i’
efﬁ; »=1,2,...,j-1, elements have been calculated. Note that in order to
xif avoid unnecessary complexity we have to rearrange the order in which we
r
:“ receive some of the coefficients from the previous processor.
-~ Specifically, we have to delay the first set of coefficients by an
5? amount such that we receive all ay-€g at the same clock cycle, all
:ﬁ p3-63 at the same clock cycle, etc.; thus, we need to delay a, by one
s clock cycle, pa by two clock cycles, etc. Once this is done,
;} coefficients with the same subscript will arrive in parallel (see top
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of Pigure 9.5). It is important to remember that each set of
coefficients arrives 7 cycles after the previous set, because this
explains the choice of the delays we use. The operations necessary for
calculating Eqs. (9.35) can be achieved via the use of multiplier and
adder LUTs as well as delays. The p2-e2 data are fed in parallel into
4 multiplier LUTs which form the products with a. The outputs are
then fed into 4 adder LUTs which form the sums with the f,-¢, data.
Note that although all coefficients with subscript 1 are equal to 1, we
treat theam as unknowns in order to generalisze the design of the
processor. Since data pz-ez are 7 cycles behind the ﬁl-el data, we
need to delay the latter by 8 cycles in order to have them available
for the addition. The result under the p2 line (equal to ;3 See

Bq. (9.36)), is needed for the calculation of the. products with the
next set of data, which will arrive a total of 5 cycles later. This
result (013) is delayed by 8 cycles and then fed to 3 multipliers which
are also driven by data T3~€3- These results are then added to the
results under lines 7,-¢, and the e,, element is computed. This
pipelined process continues until all 1 elements are computed. Note
that in parallel to the 1 calculation, we also perform the €5i %63
calculation (the e.. element does not depend on the ®51,i element) .
This is accomplished by driving sets of units similar to the ones we
used for the calculation of the ;5 elements. Due to the triangular
form of the matrix E, the number of units necessary for the calculation
of elements ®.1,i is reduced by one as compared with the number of
units needed for elements ITE Due to the pipelining process, the
parallel operations and the natural delays of the coefficients, the

E matrix elements are computed so that elements with the same second
subscript are produced in parallel (see Figure 9.5) and 7 cycles after
the previous set. Thus, once again we have achieved the pipelining

which is important for high speed processing.

For the evaluation of Eq. (8.32), we also need to calculate the

P matrix. One can easily prove that each p; row vector is given by
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B, =M\ w (9.36)
where
= 1/<w, >'1 (9.37)
-1 -1

Eq. (9.37) has already been calculated in the processor of Figure 9.4
because it is needed for the calculation of the a, p, R
coefficients. Since w. appear 4 cycles ahead of X , we need to delay
them by 4 cycles and subseqpently multiply them by X . This is shown
in Figure 9.6 for all 8 row vectors of the P matrix. We are thus
capable of producing all of the elements of a row vector of the

P matrix every 7 clock cycles.

This final step in calculating Eq. (9.32) involves a matrix-matrix
multiplication; i.e., EP. To achieve this we can use the array
processor of Figure 9.7. This system consists of 36 similar units
arranged in a square format. Each unit consists of a multiplier and an
adder LUT as well as a delay. The LUTs are arranged so that each
product is added to the previous one (i.e., we form a
multiplier/accumulator). Each set of column units is driven in
parallel by the appropriate E data, and each set of row units is driven
in parallel by the appropriate P data. Upon summation of 8 products,
the adders are read out, and each output is an element of the C matrix.
Note that the sequential format required for both E and P data is the
same as the sequential format of the data that leave the processors of
Figure 9.5 and 9.86. We must multiplex the data, however, because the E
and P data come from 21 and 38 output lines, respectively (see

Figures 9.5 and 9.8), whereas there are only 8 input lines (per side)
for the processor of Figure 9.7. This is not difficult since
successive rows (columns) of the E(P) data appear every 7 cycles.

Furthermore, by use of appropriate delays, we can provide the
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’ ?‘_; successive data at one cycle intervals (instead of 7) and allow the
:E: array processor to maintain the pipelining for at least 7 cycles, which
:',’,Q«) means that a new matrix can be read out every 7 cycles.
i
‘*-,\ ; 9.5 Processor Characteristics ‘
::'\
AW
"" Let us now discuss the system delay Ts’ which is defined as the time
oy required to provide the matrix C after loading matrix A. From
::f’_:j Figure 9.4 we see that the calculation of the € coefficients is the
- most time-consuming operation. It requires a total of
D
S
e
~": tl = (n-1) x (td4 + tc) (9.38)
-3":::: where n is the dimension of matrix A, and t 44 is the delay of LUTS4
- and tc = D is equal to the duration of a clock cycle. The next delay
jf:;; comes from the processor of Figure 9.5 and is proportional to
5 tg =t + by, (9.39)
\1 :
.: We now take into account the delay necessary for interfacing the systems
:f.“. of Pigures 9.4 and 9.5. A simple analysis shows that this delay is
proportional to
:..,.: ta = (n-1) x td4 (9.40)
ey Finally, the total delay of the array processor of Pigure 9.7 is of the
a3 order of
e
,‘;:-:
'4'._'-.
i t, = (n+2) x t (9.41)
o
':::.
,e
e
! °-23
=7 -
A R S e R R S S S T it



I*‘

e

_*-:.

h‘:::

h\‘-

From Eqs. (9.38)-(9.41), we find that the total delay of the system can

S be approximated by

? ;::.
[~

: 3 Ts ~ 2n (t:d4 + tc) (9.42)
‘:::'_‘ To express '1‘s as a function of t_ we need to calculate the delay tis-

o Inspection of Figure 9.2 reveals that the total delay is a function of

n. A simple analysis shows that the total delay is proportional to

-:\_s
:::E: td4 ~ (L + 3) x te (9.43)
O

- where L is an inceger which satisfies ZL £ n < 2L+1. From Eq. (9.42)
'_:::'_j and (9.43), we find that the system delay is proportional to

A

W
- T 22n (L +4) ¢t (9.44)
AAS 8 c

::Z:;:_ i.e., the system delay is a linear function of n. Thus for our 6x6
" sxample, the total time required to invert the first matrix is

5

o -

e Ts =72 t, (9.45)
] Assuming a clock cycle of the order of 4 nsec, we find that Ts is of
;:' the order of 0.4 usec. Similarly, for a 12x12 example, Ts is of the

&

o order of 0.9 usec.
!
2 So far we have considered the total delay of the system, i.e., the time
.-.'.; to invert the first matrix. Given the pipelined process, however, the

. .1
:q.* second matrix will be inverted after a time To which is proportional to
whe
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This is equal to the time required for the formation of the
patrix-matrix multiplication performed by the system of Figure 9.7. In
this case and for a 12 x 12 system, each matrix inversion takes about
48 nsec. Note that this dictates the time delay necessary for loading

consecutive matrices into the system of Pigure 9.4, which is equal to
T1 = nt_ (9.47)

We now estimate the total number of LUTs required by the processors

of Figures 9.4-9.7. From Figure 9.4 we see that the total number of
LUTS1 (or LUTS3) needed is n, whereas the total number of LUTS2 (or
LUTS4) is n(n-1)/2. The number of LUTs in each LUTS1 (or LUTS3) is
about n. Similarly, the number of LUTs in each LUTS2 (or LUTS4) is
about 3n. Finally, we need about n(n+3)/2 adder LUTs. Thus, the total
number of LUTs in the'processor of Figure 9.4 is

Nl = nxn + 3n2(n-1)/2 + n(n+3)/2 = 3n(n2+1)/2 (9.48)

Similarly, the total number of LUTs for the processor of Figure 9.5 is

> n3/4, and for the processor of Figure 9.7 is 2n2. Thus the total
aumber of LUTs required per modulo is

Nt = N1 + n3/4 « 20° - (7n3 + 8n2 + 6n) /4 (9.49)

Note that if L is the number of moduli used, then the total number of
LUTs needed is L Nt.

For our 8 x 8 example and with 8-bit input accuracy, we find from
Bq '9 5) that M must bound 1.4 x 1013. To handle this value we use 11
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moduli: 7, 9, 11, 13, 17, 19, 23, 25, 29, 31 and 37, and in this case
the total number of LUTs becomes = §,000. Note that these results
reflect the fact that we chose to use a high degree of parallel
processing which results in a LUT number requirement that is

proportional to n3.

This requirement can be reduced considerably if we
choose to use more of a serial-type processor; this, however, will
reduce the speed of the processor. Such issues require trade-off
analyses in order to show clearly the optimum system architecture once

the convergence time requirement is defined.
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10. CONCLUSIONS AND RECOMMENDATIONS

In this program we have examined the possibility of using DMAC-based AD
processors for solving eigensystems in conjunction with the APAR
problem. Study of existing eigensytem solution algorithms has revealed
that many of the required logical and arithmetic operations cannot be
provided by the A0 processors. An analysis of various classes of AQ
processors, that are based on DMAC and its parallel extension BPAM, has
clearly shown that this type of A0 system offers no advantage over
existing all-electronic systems. Therefore, we do not consider this to

be a viable approach.

We have suggested that optical interconnections will allow electronic
digital multipliers, in square array formats, to be globally
interconnected. At high processing speeds () 500 MHz) optical
interconnections seem to be the only choice. These, in conjunction with
global communications, will enhance the processing speed. We have
suggested a simple but efficient fiber-optic technique that allows for
global interconnections and we have fabricated a prototype optically
addressed digital multiplier. Much work is needed in this area. We
suggest that further analyses be carried out of an optically
interconnected square array for matrix-matrix multiplication and that a
prototype array be built and evaluated.

Residue-based LUT processing has been considered. We have proposed a
laser diode-based LUT which can be fabricated with present technology
and have fabricated and tested a modulo 7 prototype LUT. The results
suggest that when monolithic LUTs are developed, switching speeds that
exceed 1 GHs should be easily achievable. We suggest that LUT modelling
and analysis take place so that the problem of pulse reflections can be
minimised. The number of laser diodes in the fabricated LUT grows as

the square of the modulo. In order to avoid an excessive number of
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laser diodes novel LUT architectures need to be developed and we
recommend that additional research be done in this area. We have shown
that B/R and R/B conversions can be efficiently implemented via the use
of LUTs. An example of LUT array processing has shown that these
conversions require about 20% of the total hardware. This suggests that
the longer the processing in the RNS the less the relative hardware
needed for conversions. For the above example we have also shown that
the total number of gates for the RNS LUT processing is about twice that
of the electronic counterpart. This suggests that comparison analyses
be done in order to identify both the competitiveness of LUT processing

as well as the applications for which RNS LUT processing is well suited.

The RNS LUT processing has also been studied for use in the APAR area.
We have found that the only algorithm suited for residue LUT
implementation is a variant of the Gram-Schmidt orthogonalization
procedure. We have shown, through examples, that such an approach
yields the correct results. We recommend that this approach be further
analysed in order to determine its exact requirements and shortcomings.
Finally, we have presented the complete design of a pipelined RNS LUT
processor for the inversion of a 8x8 APAR data matrix. We have shown
that with a fully parallel implementation, the matrix inversion takes
place in N+1 cycles. Note that for such an implementation, the total
number of LUTs grows as ~ 2N3. Thus, in order to avoid an excessive
number of LUTs we recommend that a similar design be made with a more

serial nature. Such a design should clearly show the trade-offs between

processing speed and hardware complexity.
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R APPENDIX A
;h;* AN ANALYSIS FOR CIRCULARLY POLARIZED SAMPLING
)
E}J
* This appendix describes the mathematical validity of the circularly
;\{d . polarised sampling by observing the sampled function in the frequency
L 4“' ‘
}};; domain.
W
L
Consider a complex function, f(t), that has a real and an imaginary part:
N - -
f?, The sampling function is a series of delta functions, the phase of which is
qgﬁ shifted by 90° (Figure A.1) or the complex amplitude part forms a series
P
e 1, j, -1, -3, 1, j ....). In the first sampling period, it samples the
’ real part of the imput function; in the second sampling period, it samples
;&ﬁ the imaginary part; in the third period, it samples the real part with
:;j: negative polarity; and in the fourth period, it samples the imaginary part
-,
l:}j with negative polarity. This four-cycle pattern is repeated for the
f remainder of the sampling operation. We call this function a Right-Hand
;'v Circularly Polarised (RCP) sampling function, indicating the rotational
;ﬁ: orientation of the phasor. Similarly, a Left-Hand Circularly Polarized
N (LCP) sampling function is a delta function series with the quadrature
Py
rotating in the opposite direction (1, -j, -1, j, ...) and the sampling
:E: operation can be performed in a similar way.
nﬁs Mathematically this operation can be described as follows:
g:; Let .ncp(t) and -ch(t) be the RCP and LCP sampling functions,
- respectively, i.e.,
j2r == ot
) spcp(t) = o327 Tt comb[t—'] (A-2)
/ :‘E:::
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Pigure A.1 Circularly polarized sampling function.
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sLCP(t) = 32' 2t comb [2t]
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»

(A-3)
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The sampled versions of the.functions fxcp(t) and fLCP(t) are obtained

by evaluating the real part of the product of f£(t) and the sampling
functions

- . e A g
O
N
L Y

[y

H ’A.N'(.

)
L‘.A. [P =

tocp(®) = Be {£(t) spcp(t))

+

[§

<

Dl s
AR -

e
"

= Re [ n(t) +j fI(t)] [cos 2y 2t + j 8sin 27 52— 2t comb Ggﬂ

LA

ioe & o b
i [f(t) o To_ 4 17(1) oI 21;.] comb [-'g’—:] (A-4)
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£ cp(t) = Re {f(t) sm,(e)}

. t . t
-1 [f‘(t) I T+ 1(r) &I 2_'0’] comb [—fz] (A-5)

Therefore fncp(t) = f;cp(t), i.a.. the RCP sampled signal and the LCP
sanpled signal are conjugate to each other.

The spectra of these signals can be obtained by Fourier transformation
of the expressions:

Ppp(¥) = [F[u - i] + B (v + 2%8]} « comb [} v] (A-8)
FLCP(V) = [F‘[—v - E::] + F[V + 5-11:—’-]] » comb ;—8- V] , (A-7)

after dropping unnecessary coefficients (see Figure A.2). These
equations indicate that the frequency domain contains the replications
of the original spectra as in the case of ordinary sampling. The
differences are that the primary spectra are located at 1/2t’ and that
the adjacent aliases are conjugate to each other. The spacing between
the alias centers is l/t'. Therefore, the bandwidth of the original
function B must be smaller than that of the sampling frequency, i.e.,

1
B ¢ e (A-8)
s
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In other words, the bandwidth requirement is identical to that of
conventional sampling, namely, the Nyquist criterion.
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Figure A.2 The spectrum for a CP sampled signal.
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